Isomers in Exotic Nuclei

Irene Dedes

Marie Curie-Skłodowska University Lublin, Poland

Future of Low Energy Nuclear Physics in Poland and Development of National Research Infrastructure

> 14 - 15 January 2019 Warsaw, Poland

In Collaboration with:

Jerzy DUDEK IPHC and University of Strasbourg, France UMCS, Lublin, Poland

Andrzej BARAN and Jie YANG UMCS, Lublin, Poland

Dominique CURIEN and David ROUVEL IPHC and University of Strasbourg, France

Hua-Lei WANG Zhengzhou University, Zhengzhou, China

Underlying Recent Evolution and Results

A part of this presentation employs the results of the recent article:

Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

PHYSICAL REVIEW C 97, 021302(R) (2018)

J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee

announcing for the first time the discovery of the tetrahedral and octahedral symmetries in atomic nuclei

Symmetries Are <u>the</u> Factors Determining Stability^{*)} of Atomic Nuclei

*) ... by imposing hindrance mechanisms

Symmetries Are <u>the</u> Factors Determining Stability^{*)} of Atomic Nuclei

Nuclear mean field theory and group representation theory which are used in this research belong to the most powerful tools of nuclear structure theory arsenal

*) ... by imposing hindrance mechanisms

- Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries
- These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms
- For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)
- For instance: exotic (16-fold) degeneracies of 2p-2h excitations
- For instance: unprecedented degeneracies of rotational states
- For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without 'rotational (E2) transitions

• Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)

- For instance: exotic (16-fold) degeneracies of 2p-2h excitations
- For instance: unprecedented degeneracies of rotational states
- For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without 'rotational (E2) transitions

• Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)

- For instance: exotic (16-fold) degeneracies of 2p-2h excitations
- For instance: unprecedented degeneracies of rotational states
- For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without 'rotational (E2) transitions

• Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)

• For instance: exotic (16-fold) degeneracies of 2p-2h excitations

• For instance: unprecedented degeneracies of rotational states

• For instance: unprecedented forms of the nuclear rotational behaviour

- rotational bands without 'rotational (E2) transitions

• Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)

- For instance: exotic (16-fold) degeneracies of 2p-2h excitations
- For instance: unprecedented degeneracies of rotational states
- For instance: unprecedented forms of the nuclear rotational behaviour - rotational bands without 'rotational (E2) transitions'

• Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)

- For instance: exotic (16-fold) degeneracies of 2p-2h excitations
- For instance: unprecedented degeneracies of rotational states
- For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without 'rotational (E2) transitions'

• Theory predicts whole families of nuclear states in many regions of the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are neither equal to (2j + 1) nor to 2 (time-up, time-down)

- For instance: exotic (16-fold) degeneracies of 2p-2h excitations
- For instance: unprecedented degeneracies of rotational states
- For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without 'rotational (E2) transitions'

First Contact with Nuclear Tetrahedral Symmetry

• Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma: \quad R(\vartheta,\varphi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

• Given uniform density $ho_{\Sigma}(\vec{r}\,)$ defined using the surface Σ

 $\rho_{\Sigma}(\vec{r}\,) = \begin{cases} \rho_0 : \ \vec{r} \in \Sigma\\ 0 : \ \vec{r} \notin \Sigma \end{cases}$

• Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^{\lambda} Y_{\lambda\mu} d^{3}\vec{r}$$

• We can calculate the quadrupole moments as functions of $\alpha_{3\mu}$

• Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma: \quad R(\vartheta,\varphi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

• Given uniform density $\rho_{\Sigma}(\vec{r}\,)$ defined using the surface Σ

$$\rho_{\Sigma}(\vec{r}) = \begin{cases} \rho_0 : \ \vec{r} \in \Sigma \\ 0 : \ \vec{r} \notin \Sigma \end{cases}$$

• Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^{\lambda} Y_{\lambda\mu} d^{3}\vec{r}$$

• We can calculate the quadrupole moments as functions of $\alpha_{3\mu}$

• Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma: \quad R(\vartheta,\varphi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

• Given uniform density $\rho_{\Sigma}(\vec{r}\,)$ defined using the surface Σ

$$\rho_{\Sigma}(\vec{r}) = \begin{cases} \rho_0 : \ \vec{r} \in \Sigma \\ 0 : \ \vec{r} \notin \Sigma \end{cases}$$

• Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^{\lambda} Y_{\lambda\mu} d^{3}\vec{r}$$

• We can calculate the quadrupole moments as functions of $\alpha_{3\mu}$

• Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma: \quad R(\vartheta,\varphi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

• Given uniform density $\rho_{\Sigma}(\vec{r}\,)$ defined using the surface Σ

$$\rho_{\Sigma}(\vec{r}) = \begin{cases} \rho_0 : \ \vec{r} \in \Sigma \\ 0 : \ \vec{r} \notin \Sigma \end{cases}$$

• Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^{\lambda} Y_{\lambda\mu} d^{3}\vec{r}$$

• We can calculate the quadrupole moments as functions of $\alpha_{3\mu}$

• Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma: \quad R(\vartheta,\varphi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\varphi) \right]$$

• Given uniform density $\rho_{\Sigma}(\vec{r}\,)$ defined using the surface Σ

$$\rho_{\Sigma}(\vec{r}) = \begin{cases} \rho_0 : \ \vec{r} \in \Sigma \\ 0 : \ \vec{r} \notin \Sigma \end{cases}$$

• Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^{\lambda} Y_{\lambda\mu} d^{3}\vec{r}$$

• We can calculate the quadrupole moments as functions of $\alpha_{3\mu}$

Once tetrahedral nuclei are populated one may expect the presence of numerous isomers since B(E2) and B(E1) at the exact tetrahedral and/or octahedral symmetry limits – vanish!

In particular, one expects series of long living (isomeric) states with unprecedented parabolic energy-spin relation

Isomers at: $E_I \propto I(I+1) \leftarrow$ Isomeric Bands

Once tetrahedral nuclei are populated one may expect the presence of numerous isomers since B(E2) and B(E1) at the exact tetrahedral and/or octahedral symmetry limits – vanish!

In particular, one expects series of long living (isomeric) states with unprecedented parabolic energy-spin relation

Isomers at: $E_I \propto I(I+1) \leftarrow$ Isomeric Bands

Introduction to Tetrahedral and Octahedral Symmetries

and

How to Establish Their Presence in Subatomic Physics

Tetrahedral Symmetry: Spherical-Harmonic Basis

Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order except 5

Three Lowest Order Solutions:			Rank \leftrightarrow Multipolarity λ			
$\lambda = 3: t_3 \equiv \alpha_{3,\pm 2}$						
$\lambda = 5$: no solution possible						
$\lambda = 7$:	$t_7 \equiv \alpha_{7,\pm 2}$	and	$\alpha_{7,\pm 6} = -\sqrt{\frac{11}{13}} \cdot \alpha_{7,\pm 2}$			
$\lambda = 9$:	$t_9 \equiv \alpha_{9,\pm 2}$	and	$\alpha_{9,\pm6} = +\sqrt{\tfrac{28}{198}} \cdot \alpha_{9,\pm2}$			

• Problem presented in detail in:

J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck, Int. J. Mod. Phys. E16, 516 (2007) [516-532].

Nuclear Tetrahedral Shapes – 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three increasing values of rank $\lambda = 3$ deformations α_{32} : 0.1, 0.2 and 0.3

Observations:

- There are infinitely many tetrahedral-symmetric surfaces
- Nuclear 'pyramids' do not resemble pyramids very much!

Octahedral Symmetry: Spherical-Harmonic Basis

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry and only in even-orders $\lambda \ge 4$

Three Lowest Order Solutions:			Rank \leftrightarrow Multipolarity λ	
$\lambda = 4:$	$o_4 \equiv$	$lpha_{40}$	and	$\alpha_{4,\pm4} = -\sqrt{\frac{5}{14}} \cdot \alpha_{40}$
$\lambda = 6:$	$o_6 \equiv$	$lpha_{60}$	and	$\alpha_{6,\pm4} = -\sqrt{\frac{7}{2}} \cdot \alpha_{60}$
$\lambda = 8:$	$o_8 \equiv$	α_{80}	and	$\alpha_{8,\pm4} = \sqrt{\frac{28}{198}} \cdot \alpha_{80}$
			and	$\alpha_{8,\pm 8} = \sqrt{\frac{65}{198}} \cdot \alpha_{80}$

• Problem presented in detail in:

J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck, Int. J. Mod. Phys. E16, 516 (2007) [516-532].

Nuclear Octahedral Shapes – 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three increasing values of rank $\lambda = 4$ deformations o_4 : 0.1, 0.2 and 0.3

Observations:

- There are infinitely many octahedral-symmetric surfaces
- Nuclear 'diamonds' do not resemble diamonds very much!

Nuclear Tetrahedral Symmetry - Proton Spectra

Double group T_d^D has two 2-dimensional - and one 4-dimensional irreducible representations \rightarrow Three distinct families of nucleon levels

Full lines \leftrightarrow 4-dimensional irreducible representations [four-fold degenerate] marked with double Nilsson labels. Observe large gaps at Z = 90 and 100.

Nuclear Tetrahedral Symmetry - Neutron Spectra

Double group T_d^D has two 2-dimensional - and one 4-dimensional irreducible representations \rightarrow Three distinct families of nucleon levels

Full lines ↔ 4-dimensional irreducible representations [four-fold degenerate] marked with double Nilsson labels. Observe large gaps at N = 136 and ~142

Numerous Tetrahedral Doubly-Magic Nuclei

It may be instructive to recall that in the exact symmetry limit tetrahedral nuclei emit neither E2 nor E1 transitions \rightarrow ISOMERS

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

 $A_1: 0^+, 3^-, 4^+, (6^+, 6^-), 7^-, 8^+, (9^+, 9^-), (10^+, 10^-), 11^-, 2 \times 12^+, 12^-, \cdots$

Forming a common parabola

- There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}, E_{9^-} = E_{9^+}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+$$

Forming a common parabola

$$A_{2u}: 3^{-}, 6^{-}, 7^{-}, 9^{-}, 10^{-}, 11^{-}, \dots, I^{\pi} = I^{-}$$

Forming another (common) parabola

Consequently we should expect two independent parabolic structures

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

$$A_1: \quad 0^+, 3^-, 4^+, \underbrace{(6^+, 6^-)}_{-}, 7^-, 8^+, \underbrace{(9^+, 9^-)}_{-}, \underbrace{(10^+, 10^-)}_{-}, 11^-, \underbrace{2 \times 12^+, 12^-}_{-}, \cdots$$

doublet	doublet	doublet	triplet

• There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}, E_{9^-} = E_{9^+}$, etc.

• One shows that the analogue structure in the octahedral symmetry

$$A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+$$

Forming a common parabola

$$A_{2u}$$
: 3⁻, 6⁻, 7⁻, 9⁻, 10⁻, 11⁻, ..., $I^{\pi} = I^{-}$

Forming another (common) parabola

Consequently we should expect two independent parabolic structures

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

A₁: 0⁺, 3⁻, 4⁺, (6⁺, 6⁻), 7⁻, 8⁺, (9⁺, 9⁻), (10⁺, 10⁻), 11⁻,
$$2 \times 12^{+}, 12^{-}, \cdots$$

doublet doublet triplet

- There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}, E_{9^-} = E_{9^+}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+$$

Forming a common parabola

$$A_{2u}$$
: 3⁻, 6⁻, 7⁻, 9⁻, 10⁻, 11⁻, ..., $I^{\pi} = I^{-}$

Forming another (common) parabola

Consequently we should expect two independent parabolic structures

- The tetrahedral symmetry group has 5 irreducible representations
- The ground-state $I^{\pi} = 0^+$ belongs to A_1 representation given by:

A₁: 0⁺, 3⁻, 4⁺, (6⁺, 6⁻), 7⁻, 8⁺, (9⁺, 9⁻), (10⁺, 10⁻), 11⁻,
$$2 \times 12^{+}, 12^{-}, \cdots$$

- There are no states with spins I = 1, 2 and 5. We have parity doublets: $I = 6, 9, 10 \dots$, at energies: $E_{6^-} = E_{6^+}, E_{9^-} = E_{9^+}$, etc.
- One shows that the analogue structure in the octahedral symmetry

$$A_{1g}: 0^+, 4^+, 6^+, 8^+, 9^+, 10^+, \dots, I^{\pi} = I^+$$

Forming a common parabola

$$A_{2u}$$
: 3⁻, 6⁻, 7⁻, 9⁻, 10⁻, 11⁻, ..., $I^{\pi} = I^{-}$

Forming another (common) parabola

Consequently we should expect two independent parabolic structures

Since No Electromagnetic Transitions Expected:

How do we look for rotational bands 'without rotational transitions' ?

What To Start With?

Since No Electromagnetic Transitions Expected:

How do we look for rotational bands 'without rotational transitions'?

What To Start With?

Since No Electromagnetic Transitions Expected:

How do we look for rotational bands 'without rotational transitions'?

What To Start With?

What Are 'the Best' & 'Appropriate' Experimental Data?

About criteria for the experimental data search

• Central condition followed here: Nuclear states with exact high-rank symmetries produce neither dipole-, nor quadrupole moments

• Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes

• Therefore we decided to focus first of all on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus ¹⁵²Sm can be produced by about <u>25 nuclear reactions</u>, whereas surrounding nuclei can be produced typically with about a dozen but usually <u>much fewer reactions</u> only

• Energy-wise – tetrahedral bands form regular sequences

• Central condition followed here: Nuclear states with exact high-rank symmetries produce neither dipole-, nor quadrupole moments

• Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes

• Therefore we decided to focus first of all on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus ¹⁵²Sm can be produced by about <u>25 nuclear reactions</u>, whereas surrounding nuclei can be produced typically with about a dozen but usually <u>much fewer reactions</u> only

• Energy-wise – tetrahedral bands form regular sequences

• Central condition followed here: Nuclear states with exact high-rank symmetries produce neither dipole-, nor quadrupole moments

• Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes

• Therefore we decided to focus first of all on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus ¹⁵²Sm can be produced by about <u>25 nuclear reactions</u>, whereas surrounding nuclei can be produced typically with about a dozen but usually <u>much fewer reactions</u> only

• Energy-wise - tetrahedral bands form regular sequences

• Central condition followed here: Nuclear states with exact high-rank symmetries produce neither dipole-, nor quadrupole moments

• Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes

• Therefore we decided to focus first of all on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus 152 Sm can be produced by about <u>25 nuclear reactions</u>, whereas surrounding nuclei can be produced typically with about a dozen but usually <u>much fewer reactions</u> only

• Energy-wise - tetrahedral bands form regular sequences

• Central condition followed here: Nuclear states with exact high-rank symmetries produce neither dipole-, nor quadrupole moments

• Such states neither emit any collective/strong E1/E2 transitions nor can be fed by such transitions \rightarrow focus on the nuclear processes

• Therefore we decided to focus first of all on the nuclei which can be populated with a big number of nuclear reactions since we may expect that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus 152 Sm can be produced by about <u>25 nuclear reactions</u>, whereas surrounding nuclei can be produced typically with about a dozen but usually <u>much fewer reactions</u> only

• Energy-wise - tetrahedral bands form regular sequences

Tetrahedral Bands Are Not Like the Others!

One may show using the methods of point-group representation theory that, for instance, bands based on 0⁺ state have the structure:

 $A_1: \quad 0^+, \, 3^-, \, 4^+, \, 6^+, \, 6^-, \, 7^-, \, 8^+, \, 9^+, \, 9^-, \, 10^+, \, 10^-, \, 11^-, \, 2 \times 12^+, \, 12^-, \, \cdots$

and NOT

 $I^{\pi}: 0^+, 2^+, 4^+, 6^+, 8^+, 10^+, 12^+, \cdots$

Tetrahedral Bands Are Not Like the Others!

One may show using the methods of point-group representation theory that, for instance, bands based on 0⁺ state have the structure:

 $A_1: 0^+, 3^-, 4^+, 6^+, 6^-, 7^-, 8^+, 9^+, 9^-, 10^+, 10^-, 11^-, 2 \times 12^+, 12^-, \cdots$

and NOT

$$I^{\pi}: 0^+, 2^+, 4^+, 6^+, 8^+, 10^+, 12^+, \cdots$$

Similarly there exist no analogues of the "octupole bands"

 $I^{\pi}: 3^{-}, 5^{-}, 7^{-}, 9^{-}, 11^{-}, 13^{-}, 15^{-}, \cdots$

We begin by looking for experimental candidates for the 'reference seed band'

We proceed like this:

• We must try to find the sequence

 $4^+, 6^+, 8^+, 10^+ \dots$

which is parabolic, no E2 transitions

We proceed like this:

• We must try to find the sequence

 $4^+, 6^+, 8^+, 10^+ \dots$

which is parabolic, no E2 transitions

• If successful, we will fit coefficients of the reference seed-band parabola

We proceed like this:

• We must try to find the sequence

 $4^+, 6^+, 8^+, 10^+ \dots$

which is parabolic, no E2 transitions

- If successful, we will fit coefficients of the reference seed-band parabola
- Once this parabola is known we select other experimental candidate states close to reference seed-band

Today we believe that the identification of the high-rank symmetries must use strict point-group theory arguments

Today we believe that the identification of the high-rank symmetries must use strict point-group theory arguments

This has been done in the first identification article of both tetrahedral and octahedral symmetries in: Phys. Rev. C97, 021302(R) (2018)

Should We Enter This Physics in Poland in the Future?

WHY?

WHAT SHALL WE NEED?

Should We Enter This Physics in Poland in the Future?

WHY?

WHAT SHALL WE NEED?

• High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?

• Four-fold degenerate levels – never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations

• Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"

• The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures

• They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics

• Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

- High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?
- Four-fold degenerate levels never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations
- Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"
- The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures
- They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics

• Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

¹Octupole radiation is several orders of magnitude slower, so is the β -decay

- High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?
- Four-fold degenerate levels never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations
- Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"
- The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures
- They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics

• Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

- High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?
- Four-fold degenerate levels never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations
- Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"
- The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures
- They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics

• Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

- High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?
- Four-fold degenerate levels never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations
- Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"
- The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures
- They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics

• Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

- High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?
- Four-fold degenerate levels never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations
- Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"
- The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures
- They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics
- Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

- High-rank symmetries: With a number of unprecedented quantummechanical features they open a new era in nuclear spectroscopy. Why?
- Four-fold degenerate levels never seen so far in atomic nuclei; it follows the issue of the totally new structure of particle-hole excitations
- Properties called in jargon "nuclear black holes": tetrahedral nuclei once populated¹ by nuclear reaction emit nearly no electromagnetic radiation and "live forever"
- The tetrahedral doubly magic structures are numerous, much more numerous than the spherical doubly magic structures
- They are expected to play a role of the new class of waiting-point nuclei \rightarrow Nucleosynthesis processes in astrophysics

• Rotational bands $[E_I \propto I(I + 1)]$ containing degenerate doublets, triplets, ... composed of isomers with no E2-transitions

Accelerator capable of producing 'reasonably heavy' ion beams

Mass spectrometers with a 'reasonable' mass resolution [since electromagnetic transitions are expected to be very weak]

HOWEVER

Accelerator capable of producing 'reasonably heavy' ion beams

Mass spectrometers with a 'reasonable' mass resolution [since electromagnetic transitions are expected to be very weak]

HOWEVER

Accelerator capable of producing 'reasonably heavy' ion beams

Mass spectrometers with a 'reasonable' mass resolution [since electromagnetic transitions are expected to be very weak]

HOWEVER

Accelerator capable of producing 'reasonably heavy' ion beams

Mass spectrometers with a 'reasonable' mass resolution [since electromagnetic transitions are expected to be very weak]

HOWEVER