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Underlying Recent Evolution and Results

A part of this presentation employs the results of the recent article:

Spectroscopic criteria for identification of nuclear tetrahedral and
octahedral symmetries: Illustration on a rare earth nucleus

PHYSICAL REVIEW C 97, 021302(R) (2018)
J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee

announcing for the first time
the discovery of the tetrahedral and octahedral symmetries in atomic nuclei
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Symmetries Are the Factors
Determining Stability∗) of Atomic Nuclei

Nuclear mean field theory and group representation theory
which are used in this research belong to the most powerful

tools of nuclear structure theory arsenal

∗) ... by imposing hindrance mechanisms
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Why Are We Interested in High-Rank Symmetries

• Theory predicts whole families of nuclear states in many regions of
the Periodic Table compatible with exotic, new symmetries

• These symmetries may lead to well pronounced potential energy
minima and unprecedented, attractive new nuclear mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are
neither equal to (2 j + 1) nor to 2 (time-up, time-down)

• For instance: exotic (16-fold) degeneracies of 2p-2h excitations

• For instance: unprecedented degeneracies of rotational states

• For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without ’rotational (E2) transitions’

In relation to rotational bands with B(E2)=0
→ see the following comments→
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First Contact with Nuclear Tetrahedral Symmetry
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Quadrupole Moments Generated by Octupole Shapes

• Nuclear surface Σ is defined in terms of multipole deformations:

Σ : R(ϑ, ϕ) = R0
[
1 +

∑
λ

∑
µ αλµ Yλµ(ϑ, ϕ)

]
• Given uniform density ρΣ(®r ) defined using the surface Σ

ρΣ(®r ) =
{
ρ0 : ®r ∈ Σ
0 : ®r < Σ

• Express the multipole moments as usual by

Qλµ =
∫
ρΣ(®r ) r λYλµ d3®r

•We can calculate the quadrupole moments as functions of α3µ

One can demonstrate that among λ = 3 (octupole) deformations
only α32 leads to Q2 ≡ 0!
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The Notion of Isomeric Bands

Once tetrahedral nuclei are populated onemay expect the presence
of numerous isomers since B(E2) andB(E1) at the exact tetrahedral
and/or octahedral symmetry limits – vanish!

In particular, one expects series of long living (isomeric) states
with unprecedented parabolic energy-spin relation

Isomers at: EI ∝ I(I + 1) ← Isomeric Bands
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Introduction to Tetrahedral and Octahedral Symmetries

and

How to Establish Their Presence in Subatomic Physics
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Tetrahedral Symmetry: Spherical-Harmonic Basis

Only special combinations of spherical harmonics may form a basis
for surfaces with tetrahedral symmetry and only odd-order except 5

Three Lowest Order Solutions: Rank↔Multipolarity λ

λ = 3 : t3 ≡ α3,±2

λ = 5 : no solution possible

λ = 7 : t7 ≡ α7,±2 and α7,±6 = −
√

11
13 · α7,±2

λ = 9 : t9 ≡ α9,±2 and α9,±6 = +
√

28
198 · α9,±2

• Problem presented in detail in:

J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck,
Int. J. Mod. Phys. E16, 516 (2007) [516-532].
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Nuclear Tetrahedral Shapes – 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three
increasing values of rank λ = 3 deformations α32: 0.1, 0.2 and 0.3

α32 ≡ t3 = 0.1 α32 ≡ t3 = 0.2 α32 ≡ t3 = 0.3

Observations:
There are infinitely many tetrahedral-symmetric surfaces
Nuclear ‘pyramids’ do not resemble pyramids very much!
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Octahedral Symmetry: Spherical-Harmonic Basis

Only special combinations of spherical harmonics may form a basis
for surfaces with octahedral symmetry and only in even-orders λ ≥ 4

Three Lowest Order Solutions: Rank↔Multipolarity λ

λ = 4 : o4 ≡ α40 and α4,±4 = −
√

5
14 · α40

λ = 6 : o6 ≡ α60 and α6,±4 = −
√

7
2 · α60

λ = 8 : o8 ≡ α80 and α8,±4 =
√

28
198 · α80

and α8,±8 =
√

65
198 · α80

• Problem presented in detail in:

J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck,
Int. J. Mod. Phys. E16, 516 (2007) [516-532].
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Nuclear Octahedral Shapes – 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three
increasing values of rank λ = 4 deformations o4: 0.1, 0.2 and 0.3

o4 = 0.1 o4 = 0.2 o4 = 0.3

Observations:
There are infinitely many octahedral-symmetric surfaces
Nuclear ‘diamonds’ do not resemble diamonds very much!
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Nuclear Tetrahedral Symmetry - Proton Spectra

Double group TD
d

has two 2-dimensional - and one 4-dimensional
irreducible representations→ Three distinct families of nucleon levels
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Full lines ↔ 4-dimensional irreducible representations [four-fold degenerate] -
marked with double Nilsson labels.

Observe large gaps at Z = 90 and 100.
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Nuclear Tetrahedral Symmetry - Neutron Spectra

Double group TD
d

has two 2-dimensional - and one 4-dimensional
irreducible representations→ Three distinct families of nucleon levels
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Full lines ↔ 4-dimensional irreducible representations [four-fold degenerate] -
marked with double Nilsson labels.

Observe large gaps at N = 136 and ∼142
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Numerous Tetrahedral Doubly-Magic Nuclei

Tetrahedral Magic Nuclei
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It may be instructive to recall that in the exact symmetry limit tetrahedral nuclei emit
neither E2 nor E1 transitions→ ISOMERS
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Quantum Rotors: Tetrahedral vs. Octahedral
• The tetrahedral symmetry group has 5 irreducible representations
• The ground-state Iπ = 0+ belongs to A1 representation given by:

A1 : 0+, 3−, 4+, (6+, 6−)︸   ︷︷   ︸
doublet

, 7−, 8+, (9+, 9−)︸   ︷︷   ︸
doublet

, (10+, 10−)︸      ︷︷      ︸
doublet

, 11−, 2 × 12+, 12−︸          ︷︷          ︸
triplet

, · · ·

︸                                                                                                          ︷︷                                                                                                          ︸
Forming a common parabola

• There are no states with spins I = 1, 2 and 5. We have parity doublets:
I = 6, 9, 10 . . ., at energies: E6− = E6+ , E9− = E9+ , etc.

• One shows that the analogue structure in the octahedral symmetry

A1g : 0+, 4+, 6+, 8+, 9+, 10+, . . . , I π = I+︸                                                        ︷︷                                                        ︸
Forming a common parabola

A2u : 3−, 6−, 7−, 9−, 10−, 11−, . . . , I π = I−︸                                                        ︷︷                                                        ︸
Forming another (common) parabola

Consequently we should expect two independent parabolic structures
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Since No Electromagnetic Transitions Expected:

How do we look for rotational bands
‘without rotational transitions’ ?

What To Start With?
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What Are ‘the Best’ & ‘Appropriate’ Experimental Data?

About criteria for the experimental data search

• Central condition followed here: Nuclear states with exact high-rank
symmetries produce neither dipole-, nor quadrupole moments
• Such states neither emit any collective/strong E1/E2 transitions nor
can be fed by such transitions→ focus on the nuclear processes
• Therefore we decided to focus first of all on the nuclei which can be
populated with a big number of nuclear reactions since we may expect
that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus 152Sm can be produced by about
25 nuclear reactions, whereas surrounding nuclei can be produced typ-
ically with about a dozen but usually much fewer reactions only

• Energy-wise – tetrahedral bands form regular sequences

EI ∝ α2I
2 + α1I + α
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populated with a big number of nuclear reactions since we may expect
that - in such nuclei - the states sought exist in the literature

• We have verified that the nucleus 152Sm can be produced by about
25 nuclear reactions, whereas surrounding nuclei can be produced typ-
ically with about a dozen but usually much fewer reactions only

• Energy-wise – tetrahedral bands form regular sequences

EI ∝ α2I
2 + α1I + α
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Tetrahedral Bands Are Not Like the Others!

One may show using the methods of point-group representation
theory that, for instance,

bands based on 0+ state have the structure:

A1 : 0+, 3−, 4+, 6+, 6−, 7−, 8+, 9+, 9−, 10+, 10−, 11−, 2 × 12+, 12−, · · ·

and NOT
Iπ : 0+, 2+, 4+, 6+, 8+, 10+, 12+, · · ·

Similarly there exist no analogues of the “octupole bands”

Iπ : 3−, 5−, 7−, 9−, 11−, 13−, 15−, · · ·
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Starting Point in Collecting the Experimental Evidence

We proceed like this:

•We must try to find the sequence

4+, 6+, 8+, 10+ . . .

which is parabolic, no E2 transitions

• If successful, we will fit coefficients
of the reference seed-band parabola

•Once this parabola is known – we se-
lect other experimental candidate states
- close to reference seed-band
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Today we believe that the identification
of the high-rank symmetries

must use strict point-group theory arguments

This has been done in the first identification article
of both tetrahedral and octahedral symmetries in:

Phys. Rev. C97, 021302(R) (2018)
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Tetrahedral: Td

Octahedral: Oh

A1 → r.m.s.=80.5 keV
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Should We Enter This Physics in Poland in the Future?

WHY?

WHAT SHALLWE NEED?
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Why? Because of Novelty and Extreme Exoticity

• High-rank symmetries: With a number of unprecedented quantum-
mechanical features they open a new era in nuclear spectroscopy. Why?
• Four-fold degenerate levels – never seen so far in atomic nuclei; it
follows the issue of the totally new structure of particle-hole excitations
• Properties called in jargon “nuclear black holes”: tetrahedral nuclei
once populated1 by nuclear reaction emit nearly no electromagnetic
radiation and “live forever”
• The tetrahedral doubly magic structures are numerous, much more
numerous than the spherical doubly magic structures
• They are expected to play a role of the new class of waiting-point
nuclei→ Nucleosynthesis processes in astrophysics
• Rotational bands [EI ∝ I(I + 1)] containing degenerate doublets,
triplets, ... composed of isomers with no E2-transitions

1Octupole radiation is several orders of magnitude slower, so is the β-decay
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What Shall We Need? – Roughly speaking...

Accelerator capable of producing ‘reasonably heavy’ ion beams

Mass spectrometers with a ‘reasonable’ mass resolution
[since electromagnetic transitions are expected to be very weak]

HOWEVER

Powerful Germanium multi detector systems [AGATA?]
[since electromagnetic transitions are expected to be very weak]
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