

Recoil separators for studies of super-heavy nuclei

Darek Seweryniak

Argonne National Laboratory

Outline

- Recoil separators for SHN studies
- Vacuum (mass) separators versus gas-filled separators
- Examples of existing separators
 - Argonne Fragment Mass Analyzer (FMA)
 - Argonne Gas-Filled Analyzer (AGFA)
- Recoil separators under construction for SHN studies
 - Gas-Filled Separator (GFS) at Dubna
 - Superconducting Super Separator (S³) at GANIL
- Cool beams of SHN
- Conclusions

Requirements for studies of SHN

- Targets (radioactive)
- Intense beams
- Long beam times
- Efficient detection

Studies of SHN require a recoil (mass) separator to separate reaction products from a primary beam and to collect them at a focal plane for further studies.

Experimental approaches to SHN studies

- Search for new elements
- Spectroscopy of SHN
 - in-beam
 - decay
- Chemistry of SHE
- Precision mass measurements
- Laser spectroscopy

Specific choice of a recoil separator depends on a foreseen experimental program.

$^{48}Ca + {}^{248}Cm \rightarrow {}^{292}116 + 4n$ 0.3 mg/cm² Cm oxide

Neutron emission Target thickness

Sigma_X' [rms] = 24.4161 mrad Sigma_Y' [rms] = 24.2556 mrad Sigma_X [rms] = 0.4998 mm Sigma_Y [rms] = 2.8824 mm

Important separator design parameters

- Transmission (depends on a reaction)
 - Solid angle
 - Energy acceptance
 - M/Q acceptance
- Mass resolution
- Electric and magnetic rigidity
- Beam suppression
- Focal plane size

Recoil separators currently used for studies of SHN can be roughly divided into two groups: vacuum (mass) separators and gas-filled separators

Vacuum vs Gas-Filled separators

- M/Q measurement
- Ophysical M/Q separation
- good beam suppression (for symmetric reactions)

- no mass resolution
- \mathfrak{S} no separation
- poor beam suppression (for symmetric reactions)
- not suitable for very asymmetric reactions

- ⊗ low efficiency
- Iong flight path
- ⊗ more complex
- 8 more expensive

- high efficiency
- ③ short flight path
- 🙁 simple
- ⊗ less expensive

Very much complementary devices!

Principle of Operation

Existing and planned separators for SHN studies

	vacu	um separators			
laboratory	velocity filter	recoil mass separator	gas-filled separator		
GSI	SHIP		TASCA		
DUBNA	VASILLISSA		DGFRS		
	SHELS		DGS		
LBNL			BGS		
RIKEN			GARIS II		
ANL		FMA	AGFA		
Jyvaskyla		MARA	RITU		
GANIL		S3	VAMOS*		
IMP Lanzhou			SHANS		

Active SHE searches Starting Under design/construction *gas-filled mode of operation

Argonne Fragment Mass Analyzer

FMA parameters

Mass resolution: $\delta M/M \sim 1/350$ Angular acceptance: $\Delta \Omega = 8 \text{ msr}$ Energy acceptance: $\Delta \delta/\delta = +/-20\%$ M/Q acceptance: $\Delta (M/Q)/(M/Q) = 10\%$ Flight path 8.2m Max(B ρ)=1.1Tm Max(B ρ)=1.1Tm Max(E ρ)=20MV Can be rotated off 0 degrees Can be moved along the axis Different focusing modes

Super-heavy nuclei

Neutron number

Slide courtesy of S. Hoffman

AGFA concept D. Potterveld, ANL

Use <u>Combined Function</u> bending magnet

- Overlapping bending, focusing fields
- Fewer magnets, ultra-compact design

 $Q_v D_m$ design

2.5 Tm max Bρ 38° bend

22.5 msr @ 80 cm (44 msr @ 40 cm)

4.2 total length @ 80 cm (3.9 m @ 40 cm)

Combined function magnet

Dipole magnet

Quadrupole

Constant field

More complex pole shapes generate higher order terms

Combined function: $B_y = B_0 + B_1 \cdot x + B_2 \cdot x^2 + B_3 \cdot x^3 + \cdots$

Dipole edge rotation provides additional focusing

Comparison of gas-filled separators

Separator and Location	Config.	Solid angle	Bend Angle	Max. B-rho	Length	Target Dist.	Dispersion
		(msr)		(Tm)	(m)	(cm)	(cm/%)
BGS	$Q_v D_h D$	45	70°	2.5	4.6	35	1.80
LBNL							
TASCA	$D Q_h Q_v$	13	30°	2.4	3.5	15	1.0
GSI							
RITU	$Q_{\rm v}D Q_{\rm h}Q_{\rm v}$	10	25°	2.2	4.7	40	1.0
Jyväskylä	, n ,						
Garis II	$D Q_h Q_v D$	20	45°	2.4	5.1	<40	0.78
Riken							
GFS	$D Q_h Q_v$	10	23°	3.1	4.3	<40	0.63
Dubna							
AGFA	$Q_v D_m$	22	38°	2.5	4.2	80	0.59
ATLAS	,						
AGFA	Q _v D _m	44	38°	2.5	3.9	40	0.61
ATLAS							

Monte-Carlo simulation results

 $^{48}Ca + {}^{208}Pb \rightarrow {}^{254}No + 2n$ $E_{beam} = 220 \text{ MeV}$

- 1 Torr He
- 5 x 2 mm beam spot
- ²⁵⁴No angular distribution: σ = 51 mrad
- ⁴⁸Ca stripped in C foil: <q> = 17.1
- 89% of ²⁵⁴No transported to focal plane
- 71% fall within a 64 x 64 mm² DSSD
- Solid angle to DSSD is 22.5 msr.
- Beam is well separated.

AGFA - Argonne Gas-filled Fragment Analyzer

Large target-separator distance - prompt γ -ray spectroscopy with a 4π Ge array Compact focal plane – efficient decay spectroscopy Short flight path – fast activities

AGFA and Gammasphere

AGFA focal plane

High-granularity Fast Implantation-Decay Station

Digital DAQ

100 200 300 400 500 600 700 800 900

Time Step [10 ns]

150

100 m

50[□]

X-Array, 5 clovers in box geometry

AGFA Cost

- Quad 240 k\$
- Dipole 350 k\$
- Vacuum chamber 170 k\$
- Power supplies 125 k\$
- Support stand 50 k\$
- Utilities
- Vacuum equipment
- Differential pumping
- Gas handling system
- Detectors

...

- Target wheel system
- 1-2 M\$1 year design1 year manufacturing1 year installation

New Dubna Gas-Filled Recoil Separator

 $Q_V D Q_H Q_V D$

Slide courtesy: A. Popeko

Superconducting Super Separator - S³ Q³MDQ³Q³MDQ³-Q³MDQ³Q³EDQ³

Two stage separation, large M/Q acceptance, good mass resolution Complex, expensive

SLCJ, 14-15 January, 2019

Slide: courtesy H. Savajols

Cool SHN beams

- GSI/SHIP
 - SHIPTRAP
 - Laser spectroscopy
- RIKEN/GARIS II
 - MRTOF
- LBNL/BGS
 - FIONA

J.M. Gates et al., PRL 121, 222501 (2018)

Conclusions

- Recoil separator is a MUST for SHN studies
- Design/construction/commissioning takes 3-5 years (best case scenario)
- Choice of a separator depends on foreseen research
- Gas-filled separator would be my first choice based on superior transmission and relative simplicity

Thank you for your attention!