Franco Camera University of Milano Statale, Department of Physics INFN section of Milano

The physical phenomenon:

- gamma decay of the HOT IVGDR The physics cases:

Dynamic Dipole Isospin Mixing

•••••

Ref: 170516_gp_programma SPES_CSN3 Report SPES WP_B0 version 1.0 May 18, 2017

4. MAIN SPES MILESTONES

Cyclotron SAT	Jul 2017
Cyclotron operation training	Dec 2017
Installation of the UCx lab	2017-2018
Installation Charge Breeder (including dedicated sources) and Medium Resolution Mass Spectrometer	2017-2019
Installation of TIS and FE in ISOL1	2018
1+ beam line to Tape System	2018
SPES ISOL system test	Spring 2019
ISOL commissioning to Tape System	Summer 2019
Installation RFQ	2019
Low energy exotic beams to the Tape System	End of 2019
Installation of two new cryostats equipped with 8 high beta RF cavities	End of 2019 - beginning of 2020
Experimental campaigns with low energy exotic beams	2020-2021
Installation of the transport beam line from 1+ to CB	2020
Installation HRMS	2021
Exotic beams reaccelerated by RFQ-ALPI	2021
Commissioning of HRMS	2022

NOW

Ebeam ≈ 40 keV

Table 1.1: Low energy SPES beams - REPORT: G.Prete, A.Andrighetto, F.Gramegna Note 8 maggio 2017.

NOTES	Beam	Pucity	Target	Source	Reference to LoI
First beam produced at SPES	²⁶ A1	l en	SiC		No LoI at present
	²⁶ Si		SiC		No LoI at present
Beams at high selection	⁸³ Ge	100	UCx	LIS	1+ (LoI n. 27)
	⁸⁴ Ge	100		LIS	1+ (LoI n.10, 27)
	80Ga	100		LIS	1+ (LoI n. 27)
	82G2	100		LIS	1+ (LoI n. 10, 27)
	110Ag	100		LIS	1+ (LoI n. 38)

Table 6.3: Charge states available for post-acceleration at SPES (intensities after the SPES-CB).

Species	Intensity [pps]	Available Charge States
⁹⁴ Rb	7E8	15+,16+,21+
¹³⁰ Sn	3.9E8	19+,29+
132Sn	7.5E7	19+,21+,23+
¹³² Sb	9.5E7	19+,21+,23+
¹³² Te	2.1E9	19+,21+,23+
¹³⁴ Te	8.5E9	27+,31+
138Cs	5.5E8	20+,22+,23+,26+,30+,31+

PARIS

PARIS is a detector array which can:

- provides excellent time resolution
- provides the multiplicity information
- provides large efficiency for high energy γ -rays
- Excellent for the measurement of the gamma decay of hot IVGDR from CN nuclei
 - Physics case 1
 - Dynamical Dipole LOI SPES
 - Physics case 2
 - Isospin Mixing

Dynamical Dipole Emission

In a fusion reaction, if the colliding nuclei have a different N/Z ratio, a charge equilibration process takes place. The related neutron-proton motion has the features of a collective oscillation and it is associated to a γ emission, the so called **Dynamical Dipole (DD)** emission.

S.Flibotte et al. PRL 77(1996)1448, A.Giaz et al PRC 90(2014)014609, C.Parascandolo et al PRC(2016)044619

hysical Motivation

V. Baran et al. PRC 79 (2009), 021603

It is like a measurement of the gamma decay of IVGDR built on a CN

- suitable for PARIS

he Reaction 132Sn+58Ni

A.Giaz PRC-90(2014)014609 and A. Giaz PHD thesis

Prompt collective oscillations with exotic beams

Letter of intent for the SPES-ALPI facility

Reaction	N/Z	CN
¹²⁴ Sn+ ⁵⁸ Ni	1.48 - 1.07	¹⁸² Pt
¹²⁴ Sn+ ⁶⁴ Ni	1.48 - 1.29	¹⁸² Pt
¹³² Sn+ ⁵⁸ Ni	1.64 - 1.07	¹⁹⁰ Pt

Reaction	N/Z	CN
¹²⁴ Sn+ ⁴⁸ Ca	1.48 - 1.40	¹⁷² Yb
¹³² Sn+ ⁴⁰ Ca	1.64 - 1.00	¹⁷² Yb

¹³²Sn: the "monster" resonance

sospin Mixing

Heisenberg introduces a new quantum number, the Isobaric spin (Isospin) I, to specify whether a particle in the nucleus is a proton or a neutron

Iz = (N - Z)/2 $Iz | \le I \le (N + Z)/2$ g.s.: I = IzN=Z nucleus I = Iz=0

E1 γ transition (only in N=Z nuclei)

It is a hot GDR measurement

- suitable for PARIS

Isospin Mixing was intensively studied in the past at Univ. of Washington and at Warsaw

- A. Behr et al. Phys. Rev. Lett. 70(1993)3201 M. Kicinska-Habior et al. NPA 731(2004)138 M. Kicinska-Habior Acta Physica Polonica B 4(2005)1133

sospin Mixing

Breaking of Isospin symmetry: Compound Nuclei

A.Corsi et al. PRC 84, 041304(R) (2011)

S:Ceruti et al. PRL 115(2015)222502

Beyond nuclear structure: CKM matrix

$$Ft \equiv ft(1+\delta_R)(1-\delta_C)$$

Many parametrizations are present in literature to describe δC behaviour. Auerbach proposed:

$$\delta_{\rm C} = 4({\rm I}+1) \frac{{\rm V}_1}{41\xi {\rm A}^{2/3}} \alpha^2$$

Isospin mixing

I.S. Towner and J.C. Hardy PRC 82, 065501 (2010)

Conclusion

The physics cases of

- the measurement of the Dynamical Dipole emission
- the measurement of the Isospin Mixing at zero temperature

-

requires the measurement of

- High energy gamma rays
- The multiplicity of the gamma radiation
- Excellent time resolution

Requires the use of radiactive beams

- 132Sn is a good candidate for the Monster D.D
- N=Z nuclei are required for Isospin Mixing

PARIS collaboratorions Milano and Kracow HECTOR and HECTOR+ collaborations SPES, Galileo and Garfield collaborations

Thank you for the attention