

Coulex of SD band in ⁴⁰Ca

<complex-block>

Super-deformation in ⁴⁰Ca

VOLUME 87, NUMBER 22

PHYSICAL REVIEW LETTERS

26 NOVEMBER 2001

Superdeformation in the Doubly Magic Nucleus ${}^{40}_{20}Ca_{20}$

E. Ideguchi,¹ D. G. Sarantites,¹ W. Reviol,¹ A. V. Afanasjev,^{2,3,4} M. Devlin, ^{1,*} C. Baktash,⁵ R. V. F. Janssens,² D. Rudolph,⁶ A. Axelsson,⁷ M. P. Carpenter,² A. Galindo-Uribarri,⁵ D. R. LaFosse,⁸ T. Lauritsen,² F. Lerma,¹ C. J. Lister,² P. Reiter,² D. Seweryniak,² M. Weiszflog,⁷ and J. N. Wilson,^{1,†}
¹Chemistry Department, Washington University, St. Louis, Missouri 63130
²Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
³Physics Department, University of Notre Dame, Indiana 46556-5670
⁴Laboratory of Radiation Physics, University of Latvia, LV2169, Miera str. 31, Latvia
⁵Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831-6371
⁶Department of Physics, Lund University, S-22100 Lund, Sweden
⁷The Svedberg Laboratory and Department of Radiation Science, Uppsala University, S-75121 Uppsala, Sweden
⁸Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (Received 23 July 2001; published 8 November 2001)

A rotational band with seven γ -ray transitions between states with spin $2\hbar$ and $16\hbar$ has been observed in the doubly magic, self-conjugate nucleus ${}^{40}_{20}$ Ca₂₀. The measured transition quadrupole moment of $1.80^{+0.39}_{-0.29}eb$ indicates a superdeformed shape with a deformation $\beta_2 = 0.59^{+0.11}_{-0.07}$. The features of this band are explained by cranked relativistic mean field calculations to arise from an 8-particle 8-hole excitation.

DOI: 10.1103/PhysRevLett.87.222501

PACS numbers: 21.10.Tg, 21.10.Re, 23.20.Lv, 27.40.+z

Studies of superdeformed (SD) rotational bands in nuclei have been the focus of major experimental and theo-

ments for some of the low-spin states in ⁴⁰Ca have been reported [6], and discussed [7] as multiparticle-multihole

FIG. 1. Partial level scheme of ⁴⁰Ca; the energy labels are given in keV, and the widths of the arrows are proportional to the relative intensities of the γ rays. Only the levels below the dashed line were known prior to this work.

222501-2

Super-deformation

Ĵа

 $Q_t = 1.80(+10.39, -0.29)$ eb $\beta_2 = 0.59(+0.11, -0.07)$

B(E2; 4+-2+)=170 [W.u.]

P.J.Napiorkowski

Historical Super-deformation in ¹⁵²Dy

VOLUME 57, NUMBER 7

PHYSICAL REVIEW LETTERS

18 AUGUST 1986

Observation of a Discrete-Line Superdeformed Band up to 60t in ¹⁵²Dy

P. J. Twin, B. M. Nyakó,^(a) A. H. Nelson, and J. Simpson Science and Engineering Research Council, Daresbury Laboratory, Warrington WA44AD, United Kingdom

M. A. Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R. Mokhtar, J. D. Morrison, and J. F. Sharpey-Schafer Oliver Lodge Laboratory, University of Liverpool, Liverpool L693BX, United Kingdom

and

G. Sletten Niels Bohr Institute, Risø, Roskilde, DK-2100 Copenhagen, Denmark (Received 5 May 1986)

A rotational band of nineteen transitions with a moment of inertia $\mathcal{J}_{band}^{(2)}$ of $84\hbar^2 \text{ MeV}^{-1}$ has been observed in ¹⁵²Dy. The band feeds into the oblate yrast states between 19⁻ and 25⁻ and it is proposed that the lowest member of the band has a spin of 22⁺ and thus the band extends up to 60 \hbar . It is identified as the yrast superdeformed band and its intensity accounts for the whole of the ridge structure seen previously in continuum E_{γ} - E_{γ} correlations.

PACS numbers: 21.10.Re, 23.20.Lv, 27.70.+q

The nucleus ¹⁵²Dy has been extensively studied and three different structures have been identified. The low-spin yrast levels have a pseudovibrational structure¹ which develops into a low-deformation ($\beta \approx 0.15$) prolate rotational band² extending up to 40 \hbar . This band, in the spin region between $8\hbar$ and $38\hbar$, lies between 0.5 and 1.5 MeV above the yrast states which have a weak oblate structure formed by particles in equatorial orbits.³⁻⁵ At higher spins the γ -ray continuum is dominated by a collective E2 bump.⁶ Part of this bump has been shown to arise from superdeformed ($\beta \approx 0.6$) bands from the existence of ridges with a super spin structure of the product of t

used in TESSA2¹⁰ with twelve escape-suppressed germanium detectors.¹¹ The states in ¹⁵²Dy were populated by the reaction ¹⁰⁸Pd(⁴⁸Ca, 4n) at 205 MeV with a target consisting of two 500- μ g-cm⁻² self-supporting foils isotopically enriched at 95% in ¹⁰⁸Pd. A 15-mgcm⁻² gold catcher foil was positioned 5 cm downstream of the targets such that it was outside the focus of the germanium detectors but within the full detection efficiency of the BGO ball. A total of over 150 million double (Ge-Ge) coincidences were recorded together with the sum energy and number of hits (fold) in the BGO ball. The time difference between the BGO ball and the second coincidences cormanium

Historical Super-deformation in ¹⁵²Dy

VOLUME 57, NUMBER 7

PHYSICAL REVIEW LETTERS

18 AUGUST 1986

Observation of a Discrete-Line Superdeformed Band up to 60% in ¹⁵²Dy

P. J. Twin, B. M. Nyakó,^(a) A. H. Nelson, and J. Simpson Science and Engineering Research Council, Daresbury Laboratory, Warrington WA44AD, United Kingdom

M. A. Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R. Mokhtar, J. D. Morrison, and J. F. Sharpey-Schafer

Oliver Lodge Laboratory, University of Liverpool, Liverpool L693BX, Un.

and

G. Sletten Niels Bohr Institute, Risø, Roskilde, DK-2100 Copenhagen, Deni (Received 5 May 1986)

A rotational band of nineteen transitions with a moment of inertia $\mathcal{I}_{band}^{(2)}$ of 8 observed in ¹⁵²Dy. The band feeds into the oblate yrast states between 19⁻ a posed that the lowest member of the band has a spin of 22⁺ and thus the bar It is identified as the yrast superdeformed band and its intensity accounts for t structure seen previously in continuum E_{γ} - E_{γ} correlations.

PACS numbers: 21.10.Re, 23.20.Lv, 27.70.+q

The nucleus ¹⁵²Dy has been extensively studied and three different structures have been identified. The low-spin yrast levels have a pseudovibrational structure¹ which develops into a low-deformation ($\beta \approx 0.15$) prolate rotational band² extending up to 40 \hbar . This band, in the spin region between $8\hbar$ and $38\hbar$, lies between 0.5 and 1.5 MeV above the yrast states which have a weak oblate structure formed by particles in equatorial orbits.³⁻⁵ At higher spins the γ -ray continuum is dominated by a collective E2 bump.⁶ Part of this bump has been shown to arise from superdeformed ($\beta \approx 0.6$) bands from the existence of ridges with a super spin state γ (2) = (85 + 2) \hbar^2 MeV⁻¹ in used in TESSA2¹⁰ with manium detectors.¹¹ Th ed by the reaction ¹⁰⁸Pc target consisting of two foils isotopically enriche cm^{-2} gold catcher foil stream of the targets su of the germanium detection efficiency of the E million double (Ge-Ge together with the sum (fold) in the BGO ball.

Super-deformation

nuclear shape far from the sphere ratio of semi major axis to semi minor axises: 2:1:1 (β₂=0.6)

Normal deformation: $1.3:1:1 \ (\beta_2=0.3)$

Hiper-deformation: $3:1:1 \ (\beta_2=1.3)$

Super-deformation w ⁴⁰Ca Shell Model Theory

PHYSICAL REVIEW C 75, 054317 (2007)

Coexistence of spherical states with deformed and superdeformed bands in doubly magic ⁴⁰Ca: A shell-model challenge

E. Caurier,¹ J. Menéndez,² F. Nowacki,¹ and A. Poves² ¹IReS, Bât27, IN2P3-CNRS/Université Louis Pasteur BP 28, F-67037 Strasbourg Cedex 2, France ²Departamento de Fisica Teórica, C-XI. Universidad Autónoma de Madrid, E-28049, Madrid, Spain (Received 15 February 2007; published 14 May 2007)

Large-scale shell-model calculations, with dimensions reaching 10^9 , are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0^+ states of 40 Ca at 3.35 and 5.21 MeV, respectively. A valence space comprising two major oscillator shells, *sd* and *pf*, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the *pf* shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40 Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different *np-nh* configurations; in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment $Q_0(t) \sim 170 e \text{ fm}^2$ up to J = 10 that decreases toward the higher spins. We submit also that the J = 8 states of the deformed and superdeformed bands are maximally mixed.

DOI: 10.1103/PhysRevC.75.054317

PACS number(s): 21.60.Cs, 23.20.Lv, 27.40.+z

Super-deformation w ⁴⁰Ca

FIG. 1. Partial level scheme of 40 Ca; the energy labels are given in keV, and the widths of the arrows are proportional to the relative intensities of the γ rays. Only the levels below the dashed line were known prior to this work.

TABLE IV. Percentage of np-nh components and energy of the first three 0⁺ states (GS, ND, and SD) of ⁴⁰Ca.

	0p-0h	2p-2h	4p-4h	6p-6h	8p-8h	E(th)	E(exp)
$0^+_{\rm GS}$	65	29	5	_	_	0	0
$0_{\rm ND}^+$	1	1	64	25	9	3.49	3.35
$0_{\rm SD}^+$	-	-	9	4	87	4.80	5.21

222501-2

M. Lach et al., Eur Phys J. A12, 381 (2001) EB+RFD exp.

40Ca vs 42Ca

FIG. 1. Partial level scheme of 40 Ca; the energy labels are given in keV, and the widths of the arrows are proportional to the relative intensities of the γ rays. Only the levels below the dashed line were known prior to this work.

222501-2

40Ca vs 42Ca

Fig. 4. The kinematic $J^{(1)}$ moments of inertia, scaled by $A^{5/3}$, as a function of rotational frequency for non-yrast positive-parity states in ⁴²Ca and for superdeformed bands in ⁴⁰Ca [8] and ³⁶Ar [7].

M. Lach et al., Eur Phys J. A12, 381 (2001) EB+RFD exp.

Coulomb excitation of ⁴²Ca @ LNL

AGATA: S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res., Sect. A 668, 26 (2012).

DANTE:

A. Gadea et al., Nucl. Instrum. Methods A 654, 88 (2011). J. J. Valiente-Dobón et al., Acta Phys. Pol. B37, 225 (2006).

42Ca COULEX @ LNL

- Experiment : February 2010
- Beam: ⁴²Ca, 170 MeV
- targets: 208 Pb, 1 mg/cm² ¹⁹⁷Au, 1 mg/cm²
- 70% Coulomb barrier
- p-y coincidence rate 150÷250 Hz

3 clusters (only) 143.8 mm from target

The first use of AGATA to measure unknown

Results from LNL

 4^{+}

Experiment @ HIL

- Experiment: October, 2011
- Beam: ³²S, 76 MeV
- Target: ${}^{12}C$, 4 mg/cm²
- Reaction: ¹²C(³²S,2p)⁴²Ca
 110 mb (COMPA & PACE)
- EAGLE-II: 15 HPGe Euroball Phase I od GAMMAPOOL

J. Mierzejewski et al., Nucl. Instrum. Methods A 659, 84 (2011).

Electromagnetic structure of ⁴²Ca

	$\langle I_i \ E2 \ I_f \rangle \ [e \ \text{fm}^2]$	$B(E2\downarrow;I_i^+)$	$B(E2\downarrow; I_i^+ \to I_f^+)$ [W.u.]	
$I_i^+ \to I_f^+$	Present	Present	Previous	
$2^+_1 \rightarrow 0^+_1$	$20.5^{+0.6}_{-0.6}$	$9.7^{+0.6}_{-0.6}$	9.3 \pm 1 [36] 11 \pm 2 [28] 9 \pm 3 [27]	
$4^+_1 \rightarrow 2^+_1$	$24.3^{+1.2}_{-1.2}$	$7.6_{-0.7}^{+0.7}$	$8.5 \pm 1.9 [45] 50 \pm 15 [28] 11 \pm 3 [27] 10^{+10} [45]$	
$6^+_1 \to 4^+_1$	$9.3^{+0.2}_{-0.2}$	$0.77^{+0.03}_{-0.03}$	0.7 ± 0.3 [27]	
$0_2^+ \to 2_1^+$	$22.2^{+1.1}_{-1.1}$	57^{+6}_{-6}	64 ± 4 [27] 100 ± 6 [28] 55 ± 1 [42] 64 ± 4 [45]	
$2^+_2 \rightarrow 0^+_1$	$-6.4^{+0.3}_{-0.3}$	$1.0\substack{+0.1\\-0.1}$	2.2 ± 0.6 [28] 1.5 ± 0.5 [27] 1.2 ± 0.3 [45]	
$2^+_2 \rightarrow 2^+_1$	$-23.7^{+2.3}_{-2.7}$	$12.9^{+2.5}_{-2.5}$	$1.2 \pm 0.5 [10]$ $17 \pm 11 [28]$ $19^{+22}_{-14} [27]$ $14^{+35} [45]$	
$4_2^+ \to 2_1^+$	42^{+3}_{-4}	23^{+3}_{-4}	14_{-9} [43] 30 ± 11 [28] 16 ± 5 [27] 12^{+7} [45]	
$2^+_2 \rightarrow 0^+_2$	26^{+5}_{-3}	15^{+6}_{-4}	< 61 [27]	
$4_2^+ \rightarrow 2_2^+$	46^{+3}_{-6}	27^{+4}_{-6}	< 46 [45] $60 \pm 30 [27]$ $60 \pm 20 [28]$ $40^{\pm 40} [45]$	
	$ I_1 F2 I_1\rangle$ [a fm ²]	0	40_{-30}^{-30} [45]	
$\frac{1}{2^{+}}$	$\langle I_i L^2 I_f \rangle [e III^-]$	Q_{sp}		
$2^+_1 \rightarrow 2^+_1$	-10^{+2}_{-3}	-12^{+1}_{-2}	$-19 \pm 8 [30]$	
$2_2^+ \rightarrow 2_2^+$	-33_{-15}^{+15}	-42_{-12}^{+12}		

Deformation of ⁴²Ca

0.5

0.0

$$\begin{aligned} \frac{1}{\sqrt{5}} \langle Q^2 \rangle &= \langle i | [E2 \times E2]_0 | i \rangle = \\ &= \frac{1}{\sqrt{(2I_i + 1)}} \sum_t \langle i | | E2 | | t \rangle \langle t | | E2 | | i \rangle \left\{ \begin{array}{cc} 2 & 2 & 0 \\ I_i & I_i & I_t \end{array} \right\} \\ &\qquad \sqrt{\frac{2}{35}} \langle Q^3 \cos 3\delta \rangle = \langle i | [[E2 \times E2]_2 \times E2]_0 | i \rangle = \\ &= \frac{\mp 1}{(2I_i + 1)} \sum_{t,u} \langle i | | E2 | | u \rangle \langle u | | E2 | | t \rangle \langle t | | E2 | | i \rangle \left\{ \begin{array}{cc} 2 & 2 & 2 \\ I_i & I_t & I_u \end{array} \right. \end{aligned}$$

Non-energy weighted quadrupole sum rules K. Kumar, Phys. Rev. Lett. 28, 249 (1972).

 $< Q^2 > [e^2 fm^4]$

State	$\langle Q^2 angle_{ m exp}$
0^{+}_{1}	500 (20)
2_{1}^{+}	900 (100)
0_{2}^{+}	1300 (230)
2^{+}_{2}	1400 (250)
State	$\langle \cos(3\delta) \rangle_{\exp}$
0_{1}^{+}	0.06 (10)
0_{2}^{+}	0.79 (13)

for $0_{2^{+}}$ $\beta_{2}=0.43(2)$ $\gamma=13(-6,+5)^{\circ}$

P.J.Napiorkowski

Deformation of ⁴²Ca

 $< Q^2 > [e^2 fm^4]$

OF WARSAW

P.J.Napiorkowski

Why SUPER-DEFORMATION in ⁴²Ca

Significant deviation from a spherical shape

• for A \approx 40 region we consider $\beta_2 \geq 0.4$

Complex configuration of the super-deformed state.

- multi-quasi-particle excitation (6p-4h)
- Collective-like band build on the super-deformed state.

Superdeformed and Triaxial States in ⁴²Ca

K. Hadyńska-Klęk,^{1,2,3,4} P. J. Napiorkowski,¹ M. Zielińska,^{5,1} J. Srebrny,¹ A. Maj,⁶ F. Azaiez,⁷ J. J. Valiente Dobón,⁴ M. Kicińska-Habior,² F. Nowacki,⁸ H. Naïdja,^{8,9,10} B. Bounthong,⁸ T. R. Rodríguez,¹¹ G. de Angelis,⁴ T. Abraham,¹ G. Anil Kumar,⁶ D. Bazzacco,^{12,13} M. Bellato,¹² D. Bortolato,¹² P. Bednarczyk,⁶ G. Benzoni,¹⁴ L. Berti,⁴ B. Birkenbach,¹⁵ B. Bruyneel,¹⁵ S. Brambilla,¹⁴ F. Camera,^{14,16} J. Chavas,⁵ B. Cederwall,¹⁷ L. Charles,⁸ M. Ciemała,⁶ P. Cocconi,⁴ P. Coleman-Smith,¹⁸ A. Colombo,¹² A. Corsi,^{14,16} F. C. L. Crespi,^{14,16} D. M. Cullen,¹⁹ A. Czermak,⁶ P. Désesquelles,^{20,21} D. T. Doherty,^{5,22} B. Dulny,⁶ J. Eberth,¹⁵ E. Farnea,^{12,13} B. Fornal,⁶ S. Franchoo,⁷ A. Gadea,²³ A. Giaz,^{14,16} A. Gottardo,⁴ X. Grave,⁷ J. Grębosz,⁶ A. Görgen,³ M. Gulmini,⁴ T. Habermann,⁹ H. Hess,¹⁵ R. Isocrate,^{12,13} J. Iwanicki,¹ G. Jaworski,¹ D. S. Judson,²⁴ A. Jungclaus,²⁵ N. Karkour,²¹ M. Kmiecik,⁶ D. Karpiński,² M. Kisieliński,¹ N. Kondratyev,²⁶ A. Korichi,²¹ M. Komorowska,^{1,2} M. Kowalczyk,¹ W. Korten,⁵ M. Krzysiek,⁶ G. Lehaut,²⁷ S. Leoni,^{14,16} J. Ljungvall,²¹ A. Lopez-Martens,²¹ S. Lunardi,^{12,13} G. Maron,⁴ K. Mazurek,⁶ R. Menegazzo,^{12,13} D. Mengoni,¹² E. Merchán,^{9,28} W. Męczyński,⁶ C. Michelagnoli,^{12,13} J. Mierzejewski,¹ B. Million,¹⁴ S. Myalski,⁶ D. R. Napoli,⁴ R. Nicolini,¹⁴ M. Niikura,⁷ A. Obertelli,⁵ S. F. Özmen,¹ M. Palacz,¹ L. Próchniak,¹ A. Pullia,^{14,16} B. Quintana,²⁹ G. Rampazzo,⁴ F. Recchia,^{12,13} N. Redon,²⁷ P. Reiter,¹⁵ D. Rosso,⁴ K. Rusek,¹ E. Sahin,⁴ M.-D. Salsac,⁵ P.-A. Söderström,³⁰ I. Stefan,⁷ O. Stézowski,²⁷ J. Styczeń,⁶ Ch. Theisen,⁵ N. Toniolo,⁴ C. A. Ur,^{12,13} V. Vandone,^{14,16} R. Wadsworth,²² B. Wasilewska,⁶ A. Wiens,¹⁵ J. L. Wood,³¹ K. Wrzosek-Lipska,¹ and M. Ziębliński⁶ ¹Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, PL 02-093 Warsaw, Poland ²Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland ³Department of Physics, University of Oslo, N-0316 Oslo, Norway ⁴INFN Laboratori Nazionali di Legnaro, Viale dell'Università, 2, I-35020 Legnaro, Italy ⁵CEA Saclay, IRFU/SPhN, F-91191 Gif-sur-Yvette, France ⁶Institute of Nuclear Physics, Polish Academy of Sciences, PL 31-342 Kraków, Poland ⁷Institut de Physique Nucléaire d'Orsay, F-91400 Orsay, France ⁸Université de Strasbourg, IPHC/CNRS, UMR7178, 23 rue du Loess, F-67037 Strasbourg, France ⁹GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ¹⁰LPMS, Université Constantine 1, Route Ain-El bey, 25000 Constantine, Algeria ¹¹Universidad Autónoma de Madrid, Departamento de Física Teórica, E-28049 Cantoblanco, Madrid, Spain ¹²INFN Sezione di Padova, I-35131 Padova, Italy ¹³Dipartimento di Fisica e Astronomia dell'Università degli Studi di Padova, I-35131 Padova, Italy ¹⁴Dipartimento di Fisica dell'Università degli Studi di Milano, I-20133 Milano, Italy ¹⁵Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany ¹⁶INFN Sezione di Milano, I-20133 Milano, Italy

Superdeformed and Triaxial States in ⁴²Ca

K. Hadyńska-Klęk,^{1,2,3,4} P. J. Napiorkowski,¹ M. Zielińska,^{5,1} J. Srebrny,¹ A. Maj,⁶ F. Azaiez,⁷ J. J. Valiente Dobón,⁴ M. Kicińska-Habior,² F. Nowacki,⁸ H. Naïdja,^{8,9,10} B. Bounthong,⁸ T. R. Rodríguez,¹¹ G. de Angelis,⁴ T. Abraham,¹ G. Anil Kumar,⁶ D. Bazzacco,^{12,13} M. Bellato,¹² D. Bortolato,¹² P. Bednarczyk,⁶ G. Benzoni,¹⁴ L. Berti,⁴ B. Birkenbach,¹⁵ B. Bruyneel,¹⁵ S. Brambilla,¹⁴ F. Camera,^{14,16} J. Chavas,⁵ B. Cederwall,¹⁷ L. Charles,⁸ M. Ciemała,⁶ P. Cocconi,⁴ P. Coleman-Smith,¹⁸ A. Colombo,¹² A. Corsi,^{14,16} F. C. L. Crespi,^{14,16} D. M. Cullen,¹⁹ A. Czermak,⁶ P. Désesquelles,^{20,21} D. T. Doherty,^{5,22} B. Dulny,⁶ J. Eberth,¹⁵ E. Farnea,^{12,13} B. Fornal,⁶ S. Franchoo,⁷ A. Gadea,²³ A. Giaz,^{14,16} A. Gottardo,⁴ X. Grave,⁷ J. Grębosz,⁶ A. Görgen,³ M. Gulmini,⁴ T. Habermann,⁹ H. Hess,¹⁵ R. Isocrate,^{12,13} J. Iwanicki,¹ G. Jaworski,¹ D. S. Judson,²⁴ A. Jungclaus,²⁵ N. Karkour,²¹ M. Kmiecik,⁶ D. Karpiński,² M. Kisieliński,¹ N. Kondratyev,²⁶ A. Korichi,²¹ M. Komorowska,^{1,2} M. Kowalczyk,¹ W. Korten,⁵ M. Krzysiek,⁶ G. Lehaut,²⁷ S. Leoni,^{14,16} J. Ljungvall,²¹ A. Lopez-Martens,²¹ S. Lunardi,^{12,13} G. Maron,⁴ K. Mazurek,⁶ R. Menegazzo,^{12,13} D. Mengoni,¹² E. Merchán,^{9,28} W. Męczyński,⁶ C. Michelagnoli,^{12,13} J. Mierzejewski,¹ B. Million,¹⁴ S. Myalski,⁶ D. R. Napoli,⁴ R. Nicolini,¹⁴ M. Niikura,⁷ A. Obertelli,⁵ S. F. Özmen,¹ M. Palacz,¹ L. Próchniak,¹ A. Pullia,^{14,16} B. Quintana,²⁹ G. Rampazzo,⁴ F. Recchia,^{12,13} N. Redon,²⁷ P. Reiter,¹⁵ D. Rosso,⁴ K. Rusek,¹ E. Sahin,⁴ M.-D. Salsac,⁵ P.-A. Söderström,³⁰ I. Stefan,⁷ O. Stézowski,²⁷ J. Styczeń,⁶ Ch. Theisen,⁵ N. Toniolo,⁴ C. A. Ur,^{12,13} V. Vandone,^{14,16} R. Wadsworth,²² B. Wasilewska,⁶ A. Wiens,¹⁵ J. L. Wood,³¹ K. Wrzosek-Lipska,¹ and M. Ziębliński⁶ ¹Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, PL 02-093 Warsaw, Poland ²Faculty of Physics, University of Warsaw, PL 00-681 Warsaw, Poland ³Department of Physics, University of Oslo, N-0316 Oslo, Norway ⁴INFN Laboratori Nazionali di Legnaro, Viale dell'Università, 2, I-35020 Legnaro, Italy ⁵CEA Saclay, IRFU/SPhN, F-91191 Gif-sur-Yvette, France ⁶Institute of Nuclear Physics, Polish Academy of Sciences, PL 31-342 Kraków, Poland ⁷Institut de Physique Nucléaire d'Orsay, F-91400 Orsay, France ⁸Université de Strasbourg, IPHC/CNRS, UMR7178, 23 rue du Loess, F-67037 Strasbourg, France ⁹GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany **NEW!** ¹⁰LPMS, Université Constantine 1, Route Ain-El bey, 25000 Constantine, Algeria ¹¹Universidad_Autónoma de Madrid, Departamento de Física Teórica, E-28049 Cantoblanco, Madrid, Spain PRC paper accepted ¹²INFN Sezione di Padova, I-35131 Padova, Italy Dipartimento di Fisica e Astronomia dell'Università degli Studi di Padova, I-35131 Padova, Italy ¹⁴Dipartimento di Fisica dell'Università degli Studi di Milano, I-20133 Milano, Italy ¹⁵Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln, Germany ¹⁶INFN Sezione di Milano, I-20133 Milano, Italy

Project ⁴⁰Ca COULEX

Experiment

40Ca

168 MeV

208Ph

mg/cm²

ORCAN

DSSSD LuSiA CD

PARIS: A. Maj et al., Acta Phys. Pol. B 40, 565 (2009) LuSIA: M.Komorowska et al., Acta Phys. Pol. B 47, 923 (2016)

Experimental setup: Paris

- 2 PARIS clusters placed 15 cm from target
- Efficiency (by Ciemała & Labiche)
 - 4% for 4MeV
 - 3.5% for 6MeV
 - 6% for 1MeV

Experimental Setup: LuSiA CD detector

- New CD detector for a scattered HI for IPNO
- DSSSD from CEA Saclay
 installed for MINORCA campaign
- *θ*_{LAB} range: 120-169 deg
- 32 rings (Δ9_{LAB} =1.54 deg)
- 64 sectors in ($\Delta \varphi_{LAB}$ =5.625 deg)

Experimental Setup: CD detector

- New CD detector for a scattered HI for IPNO
- DSSSD from CEA Saclay
 installed for MINORCA campaign
- *\Phi*_{LAB} range: 120-169 deg
- 32 rings (Δ9_{LAB} =1.54 deg)
- 64 sectors in ($\Delta \varphi_{LAB}$ =5.625 deg)
- Successful experiments in January 2015: COULEX of ⁷⁴Se and ¹⁴⁶Nd, ¹⁴⁸Sm

UNIVERSITY OF WARSAW

P.J.Napiorkowski

Simulation of ⁴⁰Ca Coulex

GOSIA: T. Czosnyka et al. Am. Phys. Soc. 28, 745 (1983)

Simulation of ⁴⁰Ca Coulex

GOSIA: T. Czosnyka et al. Am. Phys. Soc. 28, 745 (1983)

Summary

• EXPERIMENTAL GOAL:

To determine deformation of SD 0+ bandhed in 40Ca

• BEAM REQUEST:

18 UT of ⁴⁰Ca beam 12nAe, 168MeV

In order to achieve the accuracy better the 5 % in the weakest line of the 2sd decay we request 5 days of inbeam data taking (15 shifts) and 1 day (3 shifts) for the particle detector setup.

Super-deformation study in the vicinity of A=40

4-	7/2-	0+	7/2-	2-
, ΕС α,	EC	* EC	EC	EC
a39	Ca40	Ca41	Ca42	Ca
6/2+	0+	7/2-	0+	7/2
	96.941	EC	0.647	0.1
(38) 36 m	K39	K40 1.277E+9 v	K41	K4 12.30
3+	3/2+	4-	3/2+	2
*	93.2581	EC,β ⁻ 0.0117	6.7302	β-
r37	Ar38	Ar39	Ar40	Ar
5/2+	0+	209 y 7/2-	0+	7/2
	0.063	β-	99.600	β-
136 E+5 y	Cl37	Cl38 37.24 m	Cl39 55.6 m	Cl ₄ 1.35

Super-deformation study in the vicinity of A=40

Summary

- Studies of super-deformation in vicinity of ⁴⁰Ca are promising thanks to Polish_W-Polish_K-PARIS collaboration
- Coulex of SD bands: ⁴⁰Ca is not end of the story

P.J.Napiorkowski