

Feeding of low-energy structures in ¹⁸⁸Pt of different deformations by the GDR decay

Maria Kmiecik IFJ PAN Krakow

Proposal

"Feeding of low-energy structures of different deformations by the GDR decay: the nu-Ball array coupled to PARIS"

M. Kmiecik, A. Maj, M. Ciemała, B. Fornal, P. Bednarczyk, B. Wasilewska, K. Mazurek et al.

IFJ PAN Kraków, Poland;

<u>F.C.L. Crespi</u>, A. Bracco, F. Camera, S. Leoni et al. *INFN Milano and Milano University, Italy;*

J. Wilson, I. Matea, et al. IPN Orsay, France;

P. Napiorkowski, M. Kicińska-Habior et al., Warsaw University, Poland;

O. Dorvaux, Ch. Schmitt, J. Dudek et al. IPHC Strasbourg, France;

D. Jenkins et al. University of York, UK;

I. Mazumdar, V. Nanal et al, TIFR Mumbai, India;

And the PARIS Collaboration

Spokesperson: M. Kmiecik (IFJ PAN Krakow)

Co-spokeperson: F.C. L. Crespi (Milano)

Local ligison · I Wilson (IPN Orsay)

Objective

to study:

link between deformation of hot compound nucleus and different deformation of the final state of the residue
population of states of different deformation by high-energy γ– rays from GDR decay

By measurement of high-energy gamma GDR decay from ¹⁹²Pt compound nucleus associated with the 4n decay channel leading to ¹⁸⁸Pt evaporation residue

Motivation

link between deformation of hot compound nucleus and deformation of cold evaporation residue

GDR - probe for nuclear shape studies

Previous studies - coincidence measurement

of high-energy and low-energy γ-rays

low energy gated GDR strength functions

result: GDR width → deformation

M. Kmiecik et al., Nucl. Phys. A 674, 29 (2000); M. Kmiecik et al., Eur. Phys. J. A 12, 5 (2001);

Previous studies – isomer gated GDR

gate on time and discrete transitions

50

Proposed investigation

GDR emission from ¹⁹²Pt* CN decay leading to ¹⁸⁸Pt

To study:

1.the relation between deformation of ¹⁹²Pt compound nucleus and deformation of the final state of the ¹⁸⁸Pt residue

S. Mukhopadhyay et al., Phys. Lett. B 739, 462 (2014)

 20^{+}

Method

1. the relation between deformation of ¹⁹²Pt compound nucleus and deformation of the final state of the ¹⁸⁸Pt residue MEASURED: high energy gamma-rays from GDR decay in coincidence with low energy transitions from bands of different deformation

Method

 population of states of different deformation by high-energy γ–rays from GDR decay MEASURED: intensity of low energy transitions from bands of different deformation gated on GDR energy

S. Mukhopadhyay et al., Phys. Lett. B 739, 462 (2014)

obtained: transitions yield as a function of GDR energy

answer the question: How the GDR feeds low energy structures?

Experimental setup

- nuBall (24 clover HPGe detectors, • 10 coaxial Ge detectors)
- 4 PARIS clusters (36 phoswich LaBr₃/CaBr₃+Nal detectors - "wall" configuration at backward angles at 23 cm

high energy resolution

10 36 phoswiches, distance 23 cm 9 to each of the phoswich front 4 PARIS clusters, distance 23 cm 8 to each of the cluster front 36 phoswiches, distance 23 cm Total abs. eff. [%] to the fron of the phos. wall 6 5 **PARIS efficiency** 3 2 1 0 5 10 15 20 0

Reaction

¹⁸O @ 82MeV on ¹⁷⁴Yb

	Injected Ion species	Injected Intensity (nA)	charge	Termi volta (MV	nal ge)	Energy (MeV)	I analyse électriqu (nA)	ed I analy: ie max. Pos	sed I sible	Frequency pulsation (ns)	
	¹⁸ O ⁻	600	6+	12,8	4	82	280	420) .	400 ns	
	d _{174Yb} = E _{1/2} = 7	4.8 mg/ 7.5	/cm²	m ² $d_{174Yb} = 1.5 \text{ mg/cm}^2$ $E_{1/2} = 80.5$							
В	ombarding e	nergy (MeV)		77.	5	Bombarding energy (MeV)					
С	enter of Mas	s energy (Me	eV)	70.234	4	Cen	Center of Mass energy (MeV)				
С	ompound nu	icleus Excitat	ion energy	48.8	8	Compound nucleus Excitation energy				r qy 51	
Q	-value of rea	ction (MeV)		-21.43	3	Q-v	Q-value of reaction (MeV)				
С	ompound nu	icleus recoil e	nerqy	7.26	6	Compound nucleus recoil energy				7.	
С	ompound nu	icleus recoil v	elocity	2.70E-0	1	Compound nucleus recoil velocity			2.768		
С	ompound nu	icleus recoil v	elocity/c	9.01E-03	3	Compound nucleus recoil velocity/c				<i>c</i> 9.19E	
Be	Beam velocity (cm/ns)			2.88E+0	0	Beam velocity (cm/ns)				2.94E	
Be	eam velocity,	/c		9.62E-02	2	Beam velocity/c			9.80E		
di	iffuseness				2	diff	useness				
Fι	usion cross s	ection (mb)		2.36E+02	2	Fusion cross section (mb)			3.74E		
В	ass L			19.69	9	Bass L				25	
LC)			19.40	6	LO			25		
В	ass cross sec	tion		244.8	8	Bas	s cross sec	tion	386		
	Residue	Percent	x-section	(mb)		R	esidue	Percent	x-sec	tion (mb)	
	187Pt	20.40%		48.16		18	87Pt	38.10%		142.7	
	189Pt	1.90%		4.58		18	89Pt	0.70%		2.6	
	188Pt	77.10%		181.9 9		18	88Pt	60.70%		227.1	

GEMINI calculations

Reaction

82 MeV ${}^{18}O + {}^{174}Yb \rightarrow {}^{192}Pt$ (E*= 48.8 MeV, L_{max} = 20 ħ)

4.8 mg/cm² thick target

Beam time estimation

Reaction parameters:

fusion evaporation cross section = 236 mb

¹⁸⁸Pt cross section = 182 mb

target thickness = 4.8 mg/cm²

I_{beam} = 280 nA

We will require simultaneously:

low energy gamma measured by nuBallhigh energy gamma measured by PARIS

nuBall efficiency @ 500 keV = 10% PARIS efficiency @15 MeV = 2%

assuming

Estimated: ~500 events per shift (8 hours) for coincidence of GDR with low intensity gammas from the side band

In the proposal we asked for 21 shifts (7 days) of beam (based on estimation of **120 events / 8 h** for target thickness of **1.2 mg/cm2**)

Recommended by PAC: 21 UBT (7 days)

summary

We propose to measure **high-energy gamma GDR decay from** ¹⁹²**Pt** compound nucleus associated with the 4n decay channel **leading to** ¹⁸⁸**Pt** evaporation residue in order to study:

•relation between deformation of hot compound nucleus and different deformation of the residue final state

•population of states of different deformation by high-energy γ–rays from GDR decay

The experimental setup will consists of: •nuBall •4 PARIS clusters' detectors

Approved beam time is 21 shifts

Experiment is planned to be done in June 2018

Experimental setup - proposed

- nuBall (24 clover HPGe detectors, 10 coaxial Ge detectors and 10 1.5"×2" LaBr₃:Ce detectors from FATIMA)
- 4 PARIS clusters (4 x 9 phoswich LaBr₃/CaBr₃+Nal detectors) at backward angles at 25 cm distance for neutron discrimination

Reaction – from proposal

¹⁸O @ 82MeV on ¹⁷⁴Yb 1.2 mg/cm² thick target

Injected Ion species		Injected Intensity (nA)	charge	Terminal voltage (MV)	Energy (MeV)	I analysed électrique (nA)	I analysed max. Possible	Frequency pulsation (ns)	
	¹⁸ O-	600	6 ⁺	12,84	82	280	420	400 ns	

 $^{18}O + ^{174}Yb \rightarrow ^{192}Pt$ (E*= 52 MeV, L_{max} = 26 ħ)

beam time estimation

Reaction parameters: fusion evaporation cross section = 363 mb ¹⁸⁸Pt cross section = 176 mb target thickness = 1.2 mg/cm² I_{beam} = 280 nA

We will require simultanously: •low energy gamma measured by nuBall •high energy gamma measured by PARIS

nuBall efficiency @ 500 keV = 10% PARIS efficiency @15 MeV = 2%

Estimated: **~120 events per shift (8 hours)** for coincidence of GDR with low intenstity gammas from the side band

Minimum for GDR line shape is ~ 2500 counts \rightarrow 21 shifts

Based on this estimation we ask for 21 shifts (7 days) of beam and 2 additional shifts for setting up detectors and calibration ¹⁸⁸Pt

gating on time

E, [MeV] E. [MeV]

E, [MeV]