

The Study of Gamma Emission in the Fission Process

L. Qi¹, J.N. Wilson¹, M. Lebois¹, I. Matea¹, S. Oberstedt², A. Oberstedt³, B. Laurent⁴, A. Chatillon⁴, G. Georgiev⁵, A. Göök², C. Schmitt⁶, O. Serot⁷, B. Wasilewska⁸, D. Choudray³, A. Aldili⁹, A. Maj⁸, L. LeMeur¹⁰, P. Marini⁴, L. Morris¹¹, D. Jenkins¹¹, S. Courtin¹², G. Fruet¹², V. Nanal¹³, P. Napiorkowski¹⁴, M. Staniou¹⁵, A. Gatera², F. Zeiser¹⁶, S.J. Rose¹⁶

¹Institut de Physique Nucléaire Orsay, F- 91406 Orsay, France ²European Commission, JRC, Directorate G for Nuclear Safety and Security, Unit G.2, 2440 Geel, Belgium ³Extreme Light Infrastructure - Nuclear Physics (ELI-NP), 077125 Bucharest-Magurele, Romania ⁴CEA/DAM,DIF, Bruveres-le-chatel F-91297 Arpajon, France ⁵CSNSM Orsay, Bat. 104, F- 91405 Orsay, France ⁶GANIL, Bd. Henri Becquerel, B.P. 55027, F-14076 Caen Cedex 05, France ⁷CEA, DEN-Cadarache, F-13108 Saint-Paul-lez-Durance, France ⁸Institutes of Nuclear Physics (IFJ), PAN, 31-342 Krakow, Poland ⁹Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden ¹⁰Subatech, IMT-Atlantique, rue Alfred Kastler 4, 44307 Nantes, France 11Department of Physics, University of York, YO10 5DD, York, UK ¹²IPHC, Universite de Strasbourg, 23 rue du Loess, BP28 F-67037, Strasbourg, France 13Dept of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai -5, India ¹⁴Heavy Ion Laboratory, University of Warsaw, Poland ¹⁵Institute of Atomic Physics, IFIN-HH, Bucharest-Magurele, P.O. Box MG6, Romania ¹⁶University of Oslo, Department of Physics, P.O. Box 1048, Blindern 0316 Oslo, Norway

Fundamental Physics

Reactor Physics

- Electricity production: 5% from prompt fission γ rays (PFG);
- Major heat source in other components of reactor;
- Generation IV reactors;
- 10% to 28% underestimation of PFG;
- High Priority Request List of OECD/NEA.

Measurement of PFG for different fissioning system: ${}^{252}Cf(sf)$, ${}^{238}U(n_{fast},f)$ and ${}^{239}Pu(n_{fast},f)$

LICORNE Project

Wilson, J. N., et al. In EPJ Web of Conferences (Vol. 62, p. 05006).

Quasi Mono-Energetic Neutron Source

Annual PARIS Collaboration Meeting 2018

January 24, 2018

Taieb, J., et al. Nuclear Instruments and Methods in Physics Research Section A, 833 (2016): 1-7.

²⁵²Cf(sf), ²³⁸U(n,f) - March, 2016

January 24, 2018

Taieb, J., et al. Nuclear Instruments and Methods in Physics Research Section A, 833 (2016): 1-7.

²⁵²Cf(sf), ²³⁸U(n,f) - March, 2016

²³⁹Pu(n,f) - December, 2016

n/γ discrimination

Measured Spectrum: g(x)

Deconvolution (Unfold)

Inverse problem:

$$g(x) = \int_0^\infty R(x,y) f(y) \, \mathrm{d} \mathbf{y}$$

g(x): measured spectrum (observation) R(x,y): response function (simulated) f(y): emission spectrum (unknown)

Unfolding techniques tested:
[1] Billnert, R., et al. Physical Review C, 87(2), 024601.
[2] László, A. In Journal of Physics: Conference Series (Vol. 368, No. 1, p. 012043).
[3] Zech, G. Nuclear Instruments and Methods in Physics Research Section A, 716, 1-9.
[4] P. C. Hansen, http://www.imm.dtu.dk/~pch/TR/Lcurve.ps

Results and Discussions - ²⁵²Cf(sf)

6.70

0.86

* Energy range: 0.1-6.0 MeV.

7.79

 $ENDF/B-VII.1^*[28]$

	$E_n(MeV)$	$\overline{M}_{\gamma}(/fission)$	$E_{\gamma,tot}(MeV)$	$\epsilon_{\gamma}(MeV)$
$LaBr_3$	1.9	$6.38{\pm}0.19$	$5.15 {\pm} 0.21$	0.81 ± 0.04
	4.8	$7.37{\pm}0.49$	$6.29{\pm}0.69$	$0.85 {\pm} 0.11$
PARIS	1.9	$6.69 {\pm} 0.19$	$5.35{\pm}0.19$	$0.80 {\pm} 0.04$
	4.8	$7.25 {\pm} 0.42$	$6.06{\pm}0.60$	$0.84{\pm}0.10$
total	1.9	$6.54{\pm}0.19$	$5.25{\pm}0.20$	$0.80 {\pm} 0.04$
	4.8	$7.31{\pm}0.46$	$6.18{\pm}0.65$	$0.84 {\pm} 0.11$
J-M.Laborie	1.7	$7.05 {\pm} 0.20$	$5.92{\pm}0.24$	0.84 ± 0.03
et al. [7]	5.2	$7.25{\pm}0.35$	$5.73 {\pm} 0.40$	$0.79 {\pm} 0.04$

J-M. Laborie, G. Belier and J. Taieb, Phys. Procedia 31, 13 (2012).

- The average PFGS characteristics do not change significantly with increased excitation energy;
 - The extra excitation energy is mainly evacuated by prompt neutron emission;
- The gamma emission sets in the vicinity of the neutron separation energy;

A. Gatera, et al. Phys. Rev. C 95, 064609.

Fission models and calculations – GEF, FREYA, CGMF, FIFRELIN

Comparison to FIFRELIN calculation code

Fifrelin calculation performed with:

- □ Time width=+10¹⁰ s and Energy threshold=0 (red curve)
- □ Time width=+3x10⁻⁹ s and Energy threshold=100 keV (blue curve)
- → <M_{*}>=8.40; <ε*>=0.84; <E*>=7.08
- → <M_y>=7.24; <_E>=0.94; <_E>=6.81

Fifrelin calculation performed with:

□ Time width=+10¹⁰s and Energy threshold=0 (red curve)

□ Time width=+3x10⁻⁹ s and Energy threshold=100 keV (blue curve)

→ <M,>=7.24; <٤,>=0.94; <E,>=6.81

- PFGS measurement in different fissioning systems, including ²⁵²Cf(sf), ²³⁸U(n_{fast},f) and ²³⁹Pu(n_{fast},f), by using LaBr₃(Ce) and PARIS phoswich;
- PFGS and characteristics are Important Nuclear data:
- → Design Gen IV reactors;
- \rightarrow Refine and validate the fission models;

Thank you for your attention

 In all the fissioning systems the low energy range shows lots of structure due to the contribution of individual fission fragments.

January 24, 2018

Annual PARIS Collaboration Meeting 2018

Fifrelin calculation performed with:

- □ Time width=+10¹⁰ s and Energy threshold=0 (red curve)
- □ Time width=+3x10⁻⁹ s and Energy threshold=100 keV (blue curve)
- $\Rightarrow < M_{\gamma} >= 8.40; < \epsilon_{\gamma} >= 0.84; < \epsilon_{\gamma} >= 7.08$ $\Rightarrow < M_{\gamma} >= 7.24; < \epsilon_{\gamma} >= 0.94; < \epsilon_{\gamma} >= 6.81$

Fifrelin calculation performed with:

□ Time width=+10¹⁰ s and Energy threshold=0 (red curve) □ Time width=+3x10⁻⁹ s and Energy threshold=100 keV (blue curve)

→ <M_y>=8.40; <ε_y>=0.84; <E_y>=7.08 → <M_y>=7.24; <ε_y>=0.94; <E_y>=6.81

Annual PARIS Coll