

UNIVERSITÀ DEGLI STUDI DI MILANO

Lifetime measurements of excited states in neutron-rich C and O isotopes: a stringent test of the three body forces with the AGATA+PARIS+VAMOS setup

Spokespersons: S. Leoni, B. Fornal, M. Ciemala Milano – Krakow collaboration Local Contact: G. DeFrance, M. Ciemala <u>AGATA+PARIS+VAMOS collaboration</u>

Experiment Performed in July 2017 13 days (but 5 days lost ...)

Spectroscopy of N-Rich B-C-O-F Nuclei by Multi-Nucleon Transfer Reactions

In particular

T of the second 2 t in even-even nuclei

 16_18C and 18_200

Strong Sensitivity to details of ab-initio calculations (NN and NNN interactions)

P REACTION

180 (7 MeV/A) + 238U target (10 mg/cm2) -> 181Ta target (6 mg/cm2)

EXPERIMENTAL SETUP

AGATA + PARIS + VAMOS + Plunger \rightarrow experiment run with NO Plunger Lifetimes measurements by DSAM and Plunger $\tau = 100 \text{ fs} - 10' \text{ s ps}$

sics Cases – among the most interesting 16,18C, 20,220

Lifetimes of Excited states: DSAM and Plunger
Decay Branchings: PARIS, high efficiency
E2/M1 Mixing Ratio: AGATA angular distributions

/180 (7/MeV/A) on 181Ta (6 mg/cm2) - VAMOS @ 45° ZING = 45°, >1.5 Vcoulomb > 16C (-2p), 18C (-2p+2n), 200 (+2n), 220 (+4n)

Limited Spectroscopic Information (especially for lifetimes of excited states)

Never Studied in details by Multi Nucleon Transfer

ÉXPÉRIMÉNTAL SETUP

AGATA (8TC+4DC=32 crystals) → 31 crystals PARIS-Demonstrator (4 Clusters) @ 90°, 23 cm → 2 Clusters + 2 Big LaBr3 VAMOS @ 45° PLUNGER (Cologne) → NO Plunger

Simulations for 16C, a -2p product

 $v/c \approx 12\%$ (Ekin, θ LAB) from GRAZING

VAMOS Transmission $\approx 30 \%$ ε (AGATA) @ 1.8 MeV = 5.2 % ε (PARIS) @ 1.8 MeV = 6 %

by M. Ciemala

neshape Analysis (DSAM)

Lifetime range $\tau = 30$ fs -1 ps

238U (10 mg/cm2); ΔE/dx (180 @ 8 MeV/A) = 12 MeV

93Nb degrader (10 mg/cm2)

Coincidences AGATA-PARIS: gates on γ-rays detected in PARIS !!!

background reduction
enhanced sensitivity to tail

200 ... very promising 16C ... promising + additional others ...

STRATEGY for Preliminary DATA ANALYSIS

(Detector Calibration, Gain Matching, Gates on VAMOS ...)

MILANO (Fabio Crespi and Sara Ziliani (Master student)): AGATA

very careful calibration of individual crystals (152Eu and AmBe souces)
Time gates (after alignment of AGATA and VAMOS time stamps)
Replay of entire data set

ome results from MILANO Analysis of AGATA data

areful AGATA crystals calibration (152Eu, AmBe, stopped lines)

Fnerov/Ukd	
/121,7817///	
244,6974///	
/344,2785///	
867,38	
964,057/(152	
1.112,076	(152Eu)////////////////////////////////////
1.212,948///	(152 <u>⊨</u> u)////////////////////////////////////
1,299,141	(152Eu)
1.368,626//	(24Mg, beta decay of 24Na
	- neutron activation of 23Na)
1,408,013	(152Eu)
/2.614,511	(208Pb)////////////////////////////////////
2,7,54,007///	(24Mg, beta decay of 24Na
	- neutron activation of 23Na)
4.948,2	(56Fe - AmBe)
6.017,8	(57Fe-AmBe)

me results from MILANO Analysis of AGATA data

reful AGATA crystals calibration (152Eu, AmBe, stopped lines)

Calibration curve

Nearline sorting coefficients

Crysta

NEW sorting coefficients

Ignificant improvement in Energy resolution Source Spectra (end of the experiment)

Nearline CAL	FWHM 3.61 keV	FWHM 3.29 keV	FWHM 6.12 keV
NewCAL	FWHM 2.11 keV	FWHM 2.94 keV	FWHM

Ignificant improvement in Energy resolution In-beam Spectra (partial statistics: ~ 7%Total)

ery of one AGATA crystal (#42 — bad CORE signal) Fitting of individual segments

52EU/SOURCE/

Energy from core of crystal #42

(corrected) Energy from segments of crystal #42

NE alignment of AGATA crystals vs. VANOS time signal Nore precise gate on prompt coincidence – better peak/background

Before Alignment

After Alignment

Time stamp (VAMOS) — Time stamp (AGATA)

dence for drift over time for the energy spectra !!!

We are ready for a FULL sorting of the data