New Materials

Franco Camera University of Milano Statale, Department of Physics INFN section of Milano

Outline:

- Old and New Inorganic Scintillators, test, measurements and R&D:
 - LaBr3:Ce, LaBr3:Ce:Sr+
 - Elpasolite <u>CLYC</u> CLLBC
 - CeBr3
 - Conclusions

Sorry in advance if I did not cite all the works and R&D activity which have been done so far

mportant

In this talk we concentrate on scintillators. HPGe detector or in general solid state detectors will not be discussed. Semiconductor detectors have an energy resolution which will <u>never</u> be reached by scintillators (because of the energy gap, the conversion light-electrons, Fano factor, ...)

First Generation 'old' scintillators

Nal \Rightarrow acceptable energy resolution, strong non linearity in energy, bad time resolution BaF2 \Rightarrow bad energy resolution, excellent time resolution BGO \Rightarrow bad energy resolution, bad time resolution, excellent efficiency Csl \Rightarrow good for the measurement of light charged particles

Second Generation 'almost new or new' scintillators

Lanthanum Halide \Rightarrow LaBr3:Ce, LaCl3:Ce New Matherials: \Rightarrow Srl2:Eu, CeBr3 Elpasolide : \Rightarrow CLYC, CLLB, CLLBC, CLLC Ceramic \Rightarrow GYGAG

Thind Concretion estatillators

Third Generation scintillators

Co Doped LaBr3:Ce - Sr++ TLYC

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]	Pricipal decay time [ns]
Nal:Tl	38000	415	6-7	3.7	230
CsI:TI	52000	540	6-7	4.5	1000
LaBr ₃ :Ce	63000	360	3	5.1	17
Srl ₂ :Eu	80000	480	3-4	4.6	1500
CeBr ₃	45000	370	<5%	5.2	17
GYGAG:Ce	40000	540	<5%	5.8	250
CLYC:Ce	20000	390	4	3.3	1 CVL 50, ~1000

Now there are, in addition to the one listed above, some new materials (CLLB, CLLBC, LaBr3:Ce-Sr)

LaBr3:Ce:Sr was borrowed from St.Gobain

Picture done in Milano

Lanthanum Halide: LaBr3:Ce Detectors It was discovered in 2001, in Delft It is now a rather 'known' scintillator detector - it is in Knoll book !

Figure 8.14 Comparison of the 60 Co pulse height spectrum measured with 1-inch × 1-inch LaBr₃, NaI, and BaF₂ (From Nicolini et al.²¹⁵).

E.V.D. van Loef et al. Appl. Phys. Lett. 79(2001)1573

R. Nicolini et al. NIM A582>(2007)554

Several arrays have been designed

LaBr3:Ce R. Nicolini et al. NIM A582(2007)554

There is something new Co-Doped LaBr3:Ce LaBr3:Ce-Sr+ B390 (St.Gobain)

Better energy Resolution PSD Possible

LaBr3:Ce-Sr+ - Thanks to St.Gobain which borrowed us a sample G. Colombi – private communications

Lanthanum Halide: LaBr3:Ce Detectors

LaBr3:Ce detectors provide, at the same time, clean spectroscopic information from a few tens of keV up to tens of MeV, being furthermore able to clearly separate the full energy peak from the first escape one. This is particularly true for large volume detectors which have Full Energy Peak efficiency for high energy γ -rays

3"x3" LaBr3:Ce

F.G.A. Quarati et al. Appl. Rad. and Iso. 108(2016)30

3.5" x 8" LaBr3:Ce A. Giaz et alk et al. NIM A 729(2013)910

PMT non linearity and in-homogeneity in large volume crystals might limit the energy resolution to 0.5-1%. Intrinsic LaBr3:Ce non linearity may affect energy resolution for $E\gamma < 100$ keV

PSD Properties

a – detector size –Hamamatsu H6533 PMT (0.7 ns risetime) b – PMT induced effect

In general, the larger is the PMT the 'slower' is its time response.

LaBr3:Ce (whatever is the size) has a time resolution < 2 ns Extremely fast timing (FWHM < 300, ps) might be very difficult to achieve with large volume (i.e. 3" x 3") LaBr3:Ce

Small LaBr3:Ce Detectors \Rightarrow excellent time performances

- They can be used for lifetime measurement
 - $\Delta T = 50 \text{ ps}$
 - See N. Marginean et al. Eur. Phys. J. A 46, 329–336 (2010)
 - A very fast tube is needed (XP20D0) M. Moszynski et al. A 567 (2006)
 31–3
 - Energy resolution is not optimized (3.6% at 511 keV)
- Fast Timing It is a very powerful technique applied in several experiment in ROSPHERE, FATIMA array was designed for that. The important aspect is an highly tuned and well maintained array of small LaBr3:Ce

Therefore:

LaBr3:Ce (and probably Co-Doped LaBr3:Ce:Sr) Detectors

- They can do, in a much better way, the work of NaI scintillators
 - large volumes (we have 9x20 cm crystals)
 - good energy resolution (at low and high γ -ray energy)
 - very fast (fast signals and excellent time resolution)

But

- Weak PSD properties
- No neutron spectroscopy is possible
- 'strong' internal activity
- Cost

Elpasolite scintillators: CLYC, CLLC, CLLB and

- The elpasolite crystals were discovered approximately 10 years ago
- Excellent performances in terms of gamma and neutron detection.

They are Gamma and Neutron detectors:

- High energy and time resolution
- Neutron-gamma PSD capability
- High linearity

CLYC is commercially available up to 3" x 3"

CLLB is commercially available up to 1.5 " x 1.5"

CLLBC is commercially available up to 1" x 1"

	CLYC	CLLC	CLLB	CLLBC
Density [g/cm ²]	3.3	3.5	4.2	4.2
Emission [nm]	290 CVL 390 Ce⁺	290 CVL 400 Ce⁺	410 Ce⁺	410 nn
Decay Time [ns]	1 CVL 50,~1000	1 CVL 60, ≤ 400	55 <i>,</i> ≤ 270	
Light yield [ph/MeV]	20000	35000	45000	45000
Light yield [n/MeV]	70000	110000		140000
En. Res. at 662 keV [%]	4	3.4	2.9	3.3%
PSD	Excellent	Excellent	Possible	Yes

CLYC (Cs2LiYCl6:Ce3+) scintillator

 $Ep/\alpha=(En + Q) qp/\alpha \implies$ Fast n spectroscopy En < 6 MeV not to have 3 body channels

Fast Neutron Spectroscopy

PSD Ratio vs Energy in CLYC (keVee)

TOF vs Energy in CLYC (keVee)

Energy spectra of Neutrons

- LaBr3:Ce can perform a little better job for γ -rays
- But
 - **Strong PSD properties**
 - **CLYC-6** is sensitive mainly to thermal neutrons
 - **CLYC-7** is sensitive only fast neutrons
 - neutron spectroscopy is possible may be that CLYC could identify also p,D,T,alpha
 - Very weak internal activity

LaBr3:Ce - CeBr3 – Nal (3"x3") CLLBC scintillator

CeBr3 has an energy resolution a little worser than LaBr3:Ce but has no 138La internal background

The internal radiation of CLLBC is comparable to that of LaBr3:Ce Internal radiation of CLYC is extremely low if compared to LaBr3:Ce

Conclusions

In this talk we concentrate on scintillator new materials

Semiconductor detectors have an energy resolution which will <u>never</u> be reached by scintillators (because of the energy gap, the conversion light-electrons, Fano factor, ...)

- Scintillators should be used with HPGe or when HPGe cannot be used (when efficiency, timing and count rate is an important issue)
 - Large volumes are needed
 - Nañosecond (or better) time resolution is needed
 - Good (not excellent) energy resolution is needed
 - Total Price and detector maintenance is an issue
- Scintillators world is rapidly evolving and several new materials arrived, arrive and will arrive on the market

Thank you for the attention