Σ ⁺ hyperon in Gamov states

poor men hypernucleus

Sławomir Wycech - Warsaw Kristian. Pischiccia, Alessandr.Scordo -Frascati

Experiments : FINUDA, AMADEUS

Description of Gamov states : S.W.

Related physics:

open

Σ Hyperon momenta from K⁻ ⁶Li

Low momentum peak, only with Σ^+

Fig. 5. Momentum distributions of sigmas from the ${}^{6}Li(K_{stop}^{-}, \pi^{\pm}\Sigma^{\mp})A'$ reactions. The grey-filled histograms are the measured distributions. The distributions of Monte-Carlo generated sigmas are depicted by full dots, and with open diagrams are represented the M-C generated sigmas being reconstructed by FINUDA.

The origin of lower peak ?

* Initial FINUDA interpretation - stopping in the target

** AMADEUS - thin targets Trapping of Σ ⁺ into Gamov states

Low Peak versus Main Peak

Figure 4. Σ^+ momentum distribution, from K⁻ captures in ¹²C giving rise to $\Sigma^+\pi^-$ formation.

AMADEUS peaks seen in K⁻ meson capture at rest and also in-flight

Expectation

Gamov state

Nuclear +Coulomb potential

A quasi -discrete decaying state in the continuum – outgoing wave conditions

Gamov states of Σ +

In light nuclei - exist if Σ + is almost bound

$$\Phi = \frac{R(r)}{r}$$

 $-\frac{1}{2M} \frac{dR}{d^2r} + (V_c + V_n)R = ER$

Solutions for real potential Vculomb + Vnucl

K ⁻ Capture in ¹² C			
	Gamov	states in ¹¹ B	:examples
Е	[MeV]	R _{ms} [fm]	Γ[keV]
0.0	013	5.1	0.49
0.3	38	9.1	17

Limits Σ potential well depth to +/- 0.4 MeV Trapping time ~ 10^4 • Σ formation time

Technical description of Gamov states

DESCRIPTION OF GANOV STATE
TWO POTENTIALS

$$V_{LONG} = V^{CULOMB} + V^{NULLEAR}$$

 $iW_{SHORT} \quad Z \rightarrow \Lambda$
GREEN'S FUNCTION FOR V_{LONG}
 $G_{=} = \Phi^{R}(c_{*}) \Phi^{+}(r_{*}) \frac{1}{W[\Phi^{R} \Phi^{+}]}$
 $I_{REGULAR} OUTGOING WRONSKI$
NEAR SINGULARITIES = GAHOV STATES
FULL
 $G = G_{+} + G = WG_{+}$

Hyperon momentum spectra delayed fast processes

What is learned from Gamov peak

Energy level \rightarrow depth of Σ potential well precisely $2M \int dr r V(r) \approx \pi/2$

widths \rightarrow level

strengths \rightarrow K, Σ absorption parameters

difficult to extract

Extraction of nuclear parameters

The existence of the peak determines

If simple potential well : if $V = V_{\circ} \rho(r)$

¹²Carbon (¹¹B) $V_{\circ} \sim -18.6 \pm 0.4$ MeV ⁶Lithium (⁵He) $V_{\circ} \sim -26 \pm 0.5$ MeV

But potential is strongly nonlinear in p

Relation to **Σ** Hypernuclei

Optical potential for Σ

Scattering amplitudes : isospin 3/2,1/2

$$T(\Sigma^{-}p) = T(\Sigma^{+}n) = \frac{1}{3}T_3 + \frac{2}{3}T_1$$

$$T(\Sigma^{-}n) = T(\Sigma^{+}p) = T_3$$

 T_1 attractive (virtual state, changes in nuclear matter) T_3 repulsive

Hypothetical nuclei made of neutrons only

Fair chances for Σ^+ Gamov states (or Hypernuclei) in neutron excess nuclei, but A > 16 not tested

outlook

Nuclei with strong neutron tails and small or medium Z may attract Σ^+ hyperons in Gamov (or hypernuclear) states

Thank you

References:

M. Agnello et al., Phys. Lett. B704 (2011) 474,
K. Piscicchia et al., EPJ Web Conf. 137 (2017) 09005
T.Nagae et.al. Phys.Rev. Lett.80(1998)1605
S. Bart, et al., Phys. Rev. Lett. 83 (1999) 5238.

P.K. Saha, et al., Phys. Rev. C 70 (2004) 044613 K. Piscicchia , S. W. Acta Phys Pol. 48(2017)1869

T.Harada et al. Phys. Lett. B 740 (2015) 312–316

FINUDA

 $\begin{array}{l} AMADEUS \mbox{--preliminary} \\ He-\Sigma \mbox{ hypernucleus} \\ no \mbox{ heavier } \Sigma \mbox{ (-) hypernuclei} \end{array}$

no Σ (+) hypernuclei for A<16 description of the Σ (+) Gamov state

ΣHe P wave expected

Appendices

Σ + nucleus scattering at low momenta

Gamov Peak versus Main Peak

Figure 4. Σ^+ momentum distribution, from K⁻ captures in ¹²C giving rise to $\Sigma^+\pi^-$ formation.

AMADEUS Gamov peaks seen in K capture at rest and in-flight