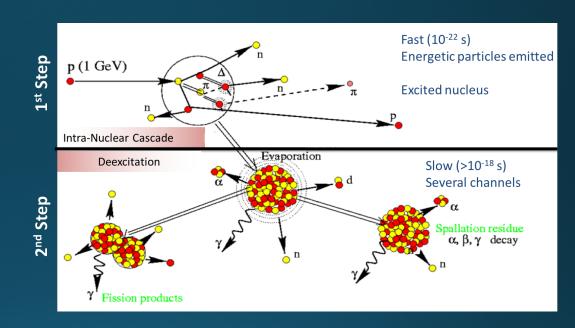
DPhN (Nuclear Science Department)

Production of strange particles and hypernuclei in nuclear reactions at a few GeV. New capabilities in INCL.

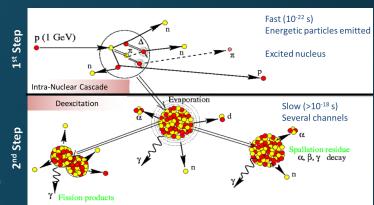
Jean-Christophe David

What


Our Model

INCL (Liège IntraNuclear Cascade)

- Projectiles (n, p, π , A < 19)
- Targets (all nuclei)
- From tens MeV to a few GeV


Abla (de-excitation) --- GSI

- Evaporation
- Fission
- Multifragmentation

Why this work?

- INCL upgraded to ~15 GeV (multiple pion emission --- no resonances, but their decay products)
- ... But other particles are produced (η, ω, Κ, Υ, ...)
 Minor role, but interesting in themselves
- Renewal of interest in studying Hypernucleus (HypHI/PANDA @ GSI/FAIR; J-PARC; JLab; ...)
- Can INCL compete with other codes?
 (INCL is also implemented in transport codes)

Ingredients

• σ_{reaction} production/scattering/absorption

• (E, Θ) output particles From exp. data, or isotropy, or phase-space

• Nuclear Potential Λ :-28 / Σ :16 / K^+ :25 / K^- :-60 / K° :15 / \overline{K}° :-50 MeV

• Decay Not in the nucleus, except Σ°

• σ_{reaction} production/scattering/absorption

• (E, Θ) output particles From exp. data, or isotropy, or phase-space

• Nuclear Potential Λ :-28 / Σ :16 / K⁺:25 / K⁻:-60 / K⁰:15 / \overline{K} ⁰:-50 MeV

• Decay Not in the nucleus, except Σ°

- De-excitation of Hyper-remnants
 - Λ evaporation
 - Separation energy (Samanta J. Phys. G: Nucl. Part. Phys. 32, 323 (2006))
 - \rightarrow $\mathbf{O}_{capture}$ (Λ) = $\mathbf{O}_{capture}$ (n)
 - Level density parameter (as for « normal » nucleus)
 - Fission
 - Barrier: LDM + Hyper-energy (Botvina PRC 94, 054615 (2016))
 - \rightarrow Λ attachement (to FF) probability increases with A (Nifenecker NPA 531, 539 (1991))

Jason Hirtz (PhD)

- production/scattering/absorption $oldsymbol{O}_{\mathsf{reaction}}$
- (E, Θ) output particles From exp. data, or isotropy, or phase-space
- Λ :-28 / Σ:16 / K⁺:25 / K⁻:-60 / K^o:15 / K^o:-50 MeV **Nuclear Potential**
- Not in the nucleus, except Σ° Decay
- - Λ evaporation
 - Separation energy (WHO?)
 - $O_{capture}(\Lambda) = O_{capture}(n)$
 - Level density parameter (as for « normal » nucleus)
 - **Fission**
 - Barrier: LDM + Hyper-energy (Botvina PRC 94, 054615 (2016))
 - Λ attachement (to FF) probability increases with A (Nifenecker NPA 531, 539 (1991))

De-excitation of Hyper-remnants

Jose Luis Rodriguez-Sanchez (Post-Doc)

Lack of exp. data

NN
$$\rightarrow$$
 NYK $(+1\pi; +2\pi)$ $\overline{K}N \rightarrow \overline{K}N (+1\pi; +2\pi)$ NNKK $Y\pi (+1\pi)$ $XN \rightarrow XN (+1\pi; +2\pi)$ $XN \rightarrow YK (+1\pi; +2\pi)$

 $NY \rightarrow NY'$

From experimental data

+ isospin symmetry at initial/final state

+ isospin symmetry at Feynman diagram level

NKK

→ 17%

→ 35[%]

→ 72%

Lack of exp. data

NN
$$\rightarrow$$
 NYK $(+1\pi; +2\pi)$ \overline{K} N $(+1\pi; +2\pi)$ NNKK $(+1\pi; +2\pi)$ \overline{K} N $(+1\pi; +2\pi)$

Lack of exp. data

$$NN \rightarrow NYK (+1\pi; +2\pi)$$

$$NNKK \qquad Y\pi (+1\pi)$$

$$K + X \qquad KN \rightarrow KN (+1\pi; +2\pi)$$

$$\pi N \rightarrow YK (+1\pi; +2\pi)$$

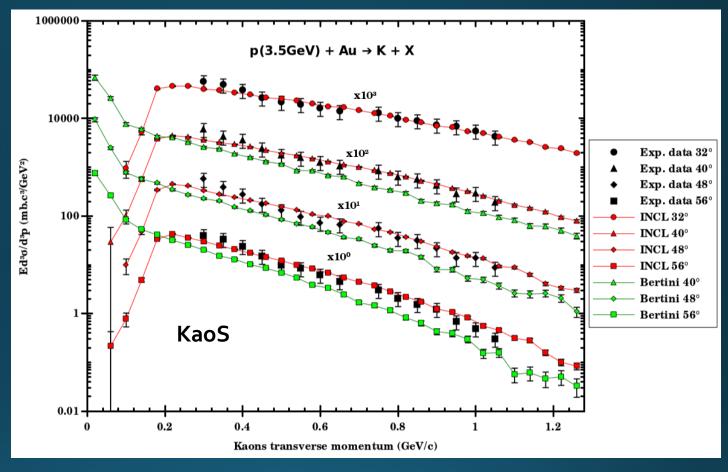
$$NKK \qquad NY \rightarrow NY'$$

$$K + X \qquad \Delta N \rightarrow NYK$$

$$\Delta YK \qquad NNKK$$

	From experimental data	\rightarrow	17%
+	isospin symmetry at initial/final state	\rightarrow	35%
+	isospin symmetry at Feynman diagram level	\rightarrow	72%
+	Models and/or hypotheses	\rightarrow	100%

Models

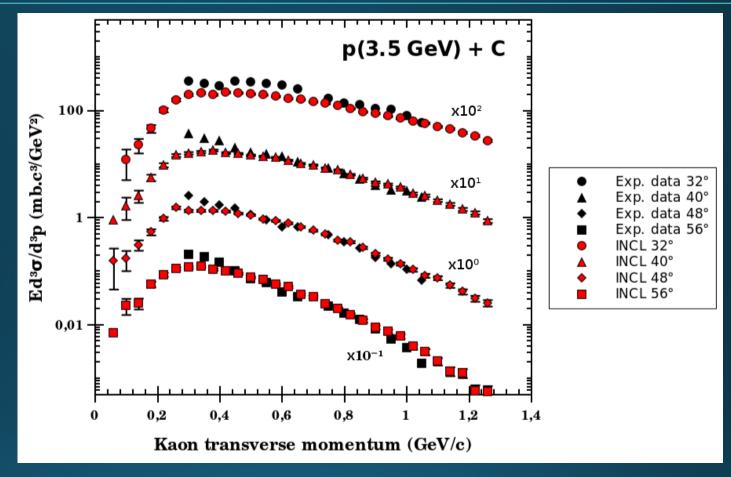

- K emission
- Λ emission
- Hypernucleus yields

K⁺ spectra

Good results!
-> Shape and values

For all angles

W. Scheinast et al., PRL 96, 072301 (2006)



K⁺ spectra

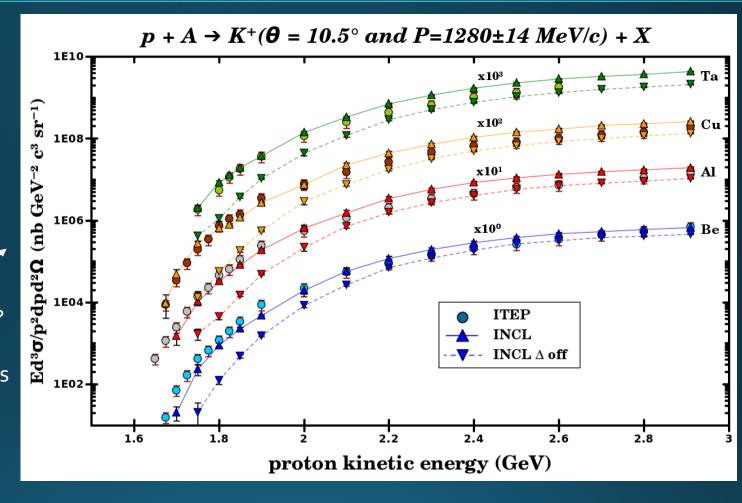
Good results also with a light target!

For all angles

Maybe a slight underestimate at low K momenta

W. Scheinast et al., PRL 96, 072301 (2006)

K⁺ excitation function


Good results!

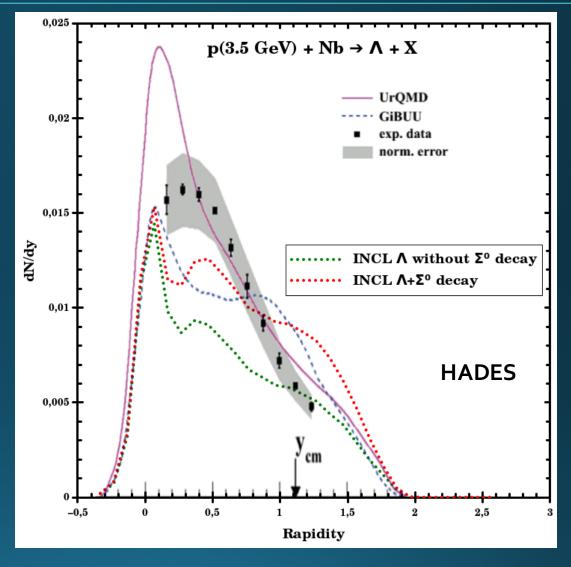
For all targets

Note:

overestimate when E_D /

-> Role of the ΔN production?
 OK at low energies
 Too high at high energies

A. V. Akindinov et al., JETP Letters, Vol. 72, No. 3, 2000, pp. 100-105


Λ rapidity

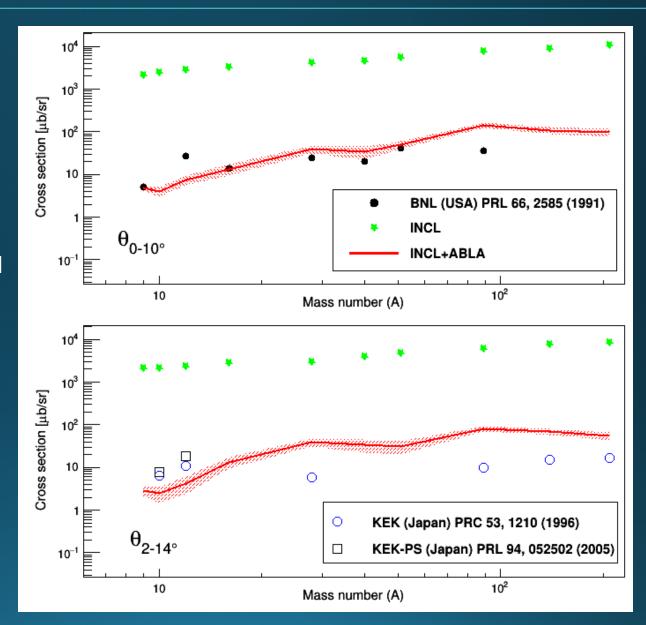
Not too bad results indeed.... when compared to other models.

To much in the forward direction and strange behaviors (bumps)...

Investigation needed!

Results

G. Agakishiev et al, Eur. Phys. J. A (2014) 50: 81


Hypernucleus yields from

$$(\pi^+, K^+)_{\Lambda} X$$

Beams: 1.06 and 1.048 GeV/c

- $\pi N \rightarrow KY$ seems well parametrized
- De-excitation important and well done

Very encouraging!

Conclusions

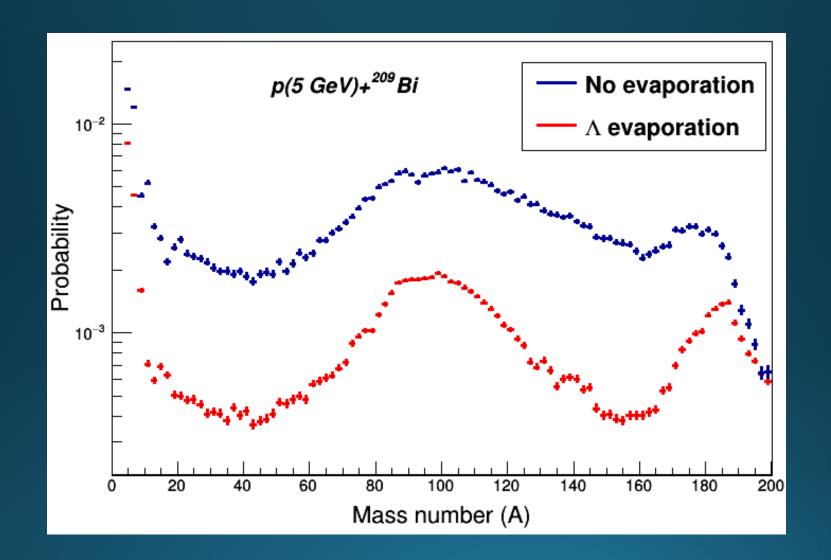
- K, Λ and hypernuclei are rather well-taken into account
- However there is room for improvement
 - Production from ΔN
 - Direction of the emitted particles
- The main difficulty is the source of information (too few exp. data)
- INCL with strangeness is in Geant4 (10.4)
 - but no hypernucleus is produced (Λ forced to decay at the end of the cascade)
- ABLAo7 also! (translated in C++ by Jose Luis Rodriguez-Sanchez)
 - 10.4 : without Λ evaporation and « strange » fission
- Next:
- It's time to investigate the deficiencies more carefully
- Addition of Ξ? (FAIR; JPARC)
- new projectiles (p̄?, e⁻?) (FAIR; MAMI; JLab)

TEAM

A. Boudard, J. Cugnon, J. Hirtz, S. Leray, D. Mancusi, Jose-Luis Rodriguez-Sanchez and G. Schnabel

Thank you!

BACKUP


Lack of exp. data

Models

- K + X : missing XS parametrized and channels drawn from fritiof calculation results
- ΔN: parametrization from
 K. Tsushima, A. Sibirtsev, A. W. Thomas, and G. Q. Li, Phys. Rev. C 59, 369

Role of the Λ evaporation

