Description of reaction dynamics -from low to Fermi energieswith stochastic semi-classical approaches

NUSPRASEN Workshop on Nuclear Reactions January 22-24, 2018 HIL, Warsaw

Nuclear Structure Physics, Reactions, Astrophysics and Superheavy Elements Network

Maria Colonna

INFN - Laboratori Nazionali del Sud (Catania)

Dissipative reaction mechanisms, involving heavy ions, can probe several aspects of the nuclear effective interaction and nuclear EOS

Outline

 The tool: mean-field models (TDHF, Vlasov, BLOB) and effective interactions

 Some examples of suitable low- and Fermi-energy (E/A ~ 10-50 MeV/A) reaction mechanisms: from deep-inelastic to fragmentation

 Sensitivity of selected observables to specific ingredients of the effective interaction

(Beyond) Mean-field models and effective interactions

$$E = \left\langle \Psi \middle| \hat{H} \middle| \Psi \right\rangle$$
$$\approx \left\langle \Phi \middle| \hat{H}_{eff} \middle| \Phi \right\rangle = E[\hat{\rho}]$$

functions of isoscalar, spin, isospin densities, currents ...

EDF, Nuclear matter EOS

Boltzmann-Langevin One Body (**BLOB**) model : *fluctuations implemented in full phase space – full BL approach*

W.Bauer, G.F.Bertsch, S.DasGupta, PRL58, 863(1987)

Rizzo, Chomaz, Colonna, NPA 806, 40(2008) Napolitani and Colonna, PLB 726, 382(2013)

• Nucleons packets are moved once a collision happens

• Shape modulation of the packet ensures Pauli blocking is respected

The nuclear Equation of State (T = 0) and the symmetry energy

Low-energy reaction mechanisms: a study within mean-field models

- Charge equilibration
- Fusion vs Quasi fission or Deep Inelastic

(Fermi energies)

- Fragmentation
 - Fragment isotopic composition

> Charge equilibration in heavy ion reactions (Dyn. Dipole)

TDHF calculations

> Simenel et al, PRC 76, 024609 (2007)

Dynamical Dipole in heavy ion reactions (DD)

The restoring force is provided by the symmetry term (as in the standard GDR) probe the symmetry energy in the density conditions and configurations reached along the reaction path [10 fm]

t=0 fm/c

(0)

t=90 fm/c

t=180 fm/c | t=270 fm/c | t=360 fm/c

• Cooling mechanism in the formation of Super Heavy Elements (SHE)

> **Theory**: a more systematic study of the sensitivity of this mechanism to the ingredients of the effective interaction and two-body dissipation needed

Ground state deformation important ???

H. Zheng et al. / Physics Letters B 769 (2017) 424-429

SAMi-J:

X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306(R) (2012); X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013).

Skyrme (MI) : H.Zheng et al.,

PHYSICAL REVIEW C 94, 014313 (2016)

+ free n-n cross section

DD oscillations: dependence on the effective interaction

• The DD emission looks sensitive to E_{sym} at $\rho = 0.6 \rho_{sat}$

Larger strength seen in the MD case: •

similar to the enhancement factor in the GDR sum rule

Fusion vs. Quasi Fission: towards the synthesis of SHE

FUSION

contact time (zs)

N Ŷ 60

40

30

20

120 100

20

80

Fusion

-usior

A 60 M 40

ш

40

 50 Ti $+^{249}$ Bk 233 MeV t=0.0 zs t=1.01 zs t=4.54 zs t=10.7 zs t=16.4 zs t=16.8 zs

TDHF calculations

• Fusion probability depends on the deformation/orientation of colliding nuclei

2

b (fm)

mass A

PHYSICAL REVIEW C 94, 024605 (2016)

solid line O

dashed line O

⁵⁰Ti + ²⁴⁹Bk, E_{c.m.} = 233.2 MeV

~-a

Umar, Oberacker, Simenel

tip

side

> Possible symmetry energy effects ??

Semi-class. calculations with neutron rich systems

Fragmentation: the onset of instabilities in nuclear matter

 $\rho^0 = 0.053 \, \text{fm}^{-3}, T = 3 \, \text{MeV}$

39 fm

t=0

20

40

80

 $160 \, \text{fm/c}$

Napolitani and Colonna, PHYS REV C 96, 054609 (2017)

BLOB simulations: Fragment multiplicity in central heavy ion reactions at Fermi energies

G. Ademard et al. (INDRA Collaboration), Eur. Phys. J. A 50, 33 (2014).

BLOB simulations: Fragment isotopic features in central heavy ion reactions at Fermi energies

 → The width of isotopic distributions (dots) is related to the symmetry energy at low density (in agreement with analytical expectations – lines)

 $Y \approx \exp[-(\delta^2/A')C_{\rm sym}(\rho)/T].$

M.B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009).

 → Isospin "distillation":
 The gas phase is neutron richer than the liquid phase

Conclusions

Dissipative reactions (at low and Fermi energies) open the opportunity to learn about fundamental properties of the nuclear effective interaction, of interest also in the astrophysical context

- Low energy collisions:
- Reaction mechanisms at the borderline with nuclear structure:
- role of effective interaction, 2-body dissipation on pre-equilibrium gamma ray emission and competition between reaction mechanisms
 Perspective: n-skin, g.s. deformation effects
- *(Coll.* IPN-Orsay LNS Milano Univ. *within* Theos *of* ENSAR2) ≻ Fermi energies:
- Fluctuation dynamics well reproduced by the BLOB model:
- -link between fragment properties and ingredients of eff. interaction.

Collaborators: **Hua Zheng** (LNS), **Stefano Burrello** (LNS), V.Baran (University of Bucharest, Romania), P.Napolitani (IPN-Orsay, France) Correlations: observables vs. parameters

H. Zheng et al. / Physics Letters B 769 (2017) 424-429

A set of 8 parameterizations in SMF simulations: Skyrme (MI) and SAMi-J31 + $\sigma_{NN} = 40$ mb, *0.5 or zero (no coll.)

Observables (A): **DD centroid**, D"(ω) integral and N/Z of pre-equilibrium nucleon emission ¹⁴

Parameters (B):

Symmetry energy slope L, effective mass m^* and NN cross section (cs) τ_{coll} : collisional damping time

Covariance analysis

see also Zhang et al, PLB 749, 262 (2015)

$$C_{AB} = \overline{(A_{(n)} - \overline{A})(B_{(n)} - \overline{B})}$$
$$c_{AB} \equiv \frac{C_{AB}}{\sqrt{C_{AA}C_{BB}}}$$

Blue: negative

Red: positive

compare with $P_{\gamma} \approx D_0^2 E_{centr}^3 \tau_{coll}$ (energy-integrated yield)