First measurements of collective excitations in ²⁰⁸Pb induced by proton beam at CCB Krakow

B. Wasilewska¹, M. Kmiecik¹, M. Ciemała¹, A. Maj¹, J. Łukasik¹,
P. Pawłowski¹, M. Ziębliński¹, P. Lasko¹, J. Grębosz¹, F.C.L. Crespi^{2;3},
A. Bracco^{2;3}, S. Brambilla³, I. Ciepał¹, N. Cieplicka¹, B. Fornal¹, Ł. Iskra¹,
M. Matejska-Minda¹, K. Mazurek¹, P. Napiorkowski⁴, W. Parol¹, B. Sowicki¹,
A. Szperłak¹, M. Harakeh⁵, A. Tamii⁶, J. Isaak⁶, S. Bottoni^{2;3}
¹IFJ PAN Kraków; ²University of Milan; ³INFN Milan; ⁴SLCJ Warsaw; ⁵KVI Groningen,
⁶RCNP Osaka

Collective states

- Pygmy Dipole Resonance: E1 states below neutron threshold
- Isovector Giant Dipole Resonance

 E1 collective state ~ 10 –
 20 MeV
- Isoscalar Giant Quadrupole Resonance – E2 collective state below IVGDR

- Macroscopic interpretation: shape oscillations
- GR shape description: Lorentzian curve

Experimental motivations

- Only one γ-decay of GQR results ever published
 - very challenging experiments
- PDR under intense studies worldwide
 - recently discovered
 - not fully understood

Additional probe for models' verification
Better understanding of the mechanisms of the collective excitations

J.Beene et al PRC39(1989)1307

Experimental set-up

HECTOR

- 8 BaF₂ detectors
- Good time resolution
- High efficiency
- BaFPro module

PARIS

- Phoswich configuration
- Cluster of 9
- Good energy resolution
- Good time resolution
- High efficiency
- PARISpro module

KRATTA

Triple telescope – LCP detection

23/01/2018

Coincidence matrix

Observables: coincidence E^* and E_{γ} spectra with various conditions

23/01/2018

Gate on transitions

Gate on transitions

- Excess of γ rays in GDR and GQR region for all of the gates
- Possible Brink-Axel Hypothesis confirmation

E* [MeV

E* [Me

30 [MeV]

Decay to the ground state - rings

- More PDR γ rays forward – as expected
- Angular sensitivity

PDR region

- Same lines as in previous experiments visible
- Additional peaks also visible

B. Wasilewska IFJ PAN, NUSPRASEN 2018

Gate on excitation energy – HECTOR

Response matrix under preparation

23/01/2018

Need for theoretical calculations

- Precise ²⁰⁸Pb(p, p'γ)@85MeV reaction description (E* up to 30 MeV)
 Differential cross sections for GR excitations
- Giant resonances γ-decay description
 - \diamond particle emission/ γ -decay branching
 - \checkmark multi γ -decay via discrete states

Connection between shell and statistical models Check for Brink-Axel Hypothesis

Future plans

- 4 LaBr₃:Ce 3.5" x 8"
- 2 PARIS clusters
- KRATTA in vacuum
- $E_{beam} = 150 \text{ MeV}$
- ²⁰⁸Pb and ⁹⁰Zr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654002; and was supported by NCN grants no. 2015/17/N/ST2/04034 and 2015/17/B/ST2/01534