

Outline

Basic features of the Trojan Horse Method

The Trojan Horse Method for resonant reactions

Physics Case: The ${}^{12}C({}^{12}C,a){}^{20}Ne$ and ${}^{12}C({}^{12}C,p){}^{23}Na$ reactions

Trojan Horse Method

Basic principle: astrophysically relevant two-body σ from quasi-free contribution of an appropriate three-body reaction

 $A + a \rightarrow c + C + s \rightarrow \rightarrow \rightarrow A + x \rightarrow c + C$

a: $x \oplus s$ clusters

Theoretical approach to the THM

$A + a \rightarrow c + C + s \rightarrow \rightarrow \rightarrow A + x \rightarrow c + C$

PWIA hypotheses:

- A does not interact simultaneously with x and s
- The presence of s does not influence the A-x interaction

$$\frac{d^{3}\sigma}{d\Omega_{c}d\Omega_{c}dE_{c}} \propto KF \cdot \left|\Phi(p_{s})\right|^{2} \frac{d\sigma^{\text{off}}}{d\Omega}$$

KF kinematical factors

 $|\Phi|^2$ momentum distribution of s inside a

 $d\sigma^{off}/d\Omega$ Nuclear cross section for the A+x→C+c reaction

A. Tumino et al., PRL 98, 252502 (2007)

 $d\sigma^{off}/d\Omega \rightarrow d\sigma/d\Omega$ (on shell) the penetration factor P₁ has to be introduced:

$$\frac{d\sigma}{d\Omega} = \sum_{l} P_l \frac{d\sigma_l^N}{d\Omega}$$

but <u>No absolute value of the cross section \rightarrow normalization to direct data</u> <u>available at higher energies</u>

...for resonant reactions

The A + $a(x+s) \rightarrow F^*(c + C) + s$ process is a transfer to the continuum where particle x is the transferred particle

In the case of a resonant THM reaction the cross section takes the form

$$\frac{d^2\sigma}{dE_{Cc}\,d\Omega_s} \propto \frac{\Gamma_{(Cc)_i}(E)\,|M_i(E)|^2}{(E-E_{R_i})^2 + \Gamma_i^2(E)/4}$$

Α

а

Х

 $M_i(E)$ is the amplitude of the transfer reaction (upper vertex) that can be easily calculated \rightarrow The resonance parameters can be extracted

<u>Advantages</u>:

- possibility to measure down to zero energy
- No electron screening
- HOES reduced widths are the same entering the OES S(E) factor (New!)

	Binary reaction	Indirect reaction	E _{lab}	Q	Accelerator	
1	⁷ Li (p , α)⁴He	² H(⁷ Li, α α)n	19-22	15.122	TANDEM 13 MV LNS-INFN, Catania	Spitaleri <i>et al.</i> PRC,1999, Lattuada <i>et al.</i> ApJ, 2001
2	⁷ Li (p , α)⁴He	⁷ Li(³ He, $\alpha \alpha$)d	33	11.853	<mark>CYCLOTRON,</mark> Rez, Praha	Tumino <i>et al.</i> EPJ, 2006
3	⁶ Li <mark>(p</mark> , α) ³ He	2 H(⁶ Li, α 3 He)n	14,25	1.795	TANDEM 13 MV LNS-INFN, Catania	Tumino <i>et al</i> . PRC, 2003
4	⁹ Be(p, α) ⁶ Li	² H(⁹ Be,α ⁶ Li)n	22	-0.099	TANDEM CIAE, Beijing TANDEM 13 MV LNS-INFN, Catania	Wen <i>et al.</i> PRC, 2008, Wen et al. JPG 2011
5	¹¹ B(p , α) ⁸ Be	² H(¹¹ B, α ⁸ Be)n	27	6.36	TANDEM 13 MV LNS-INFN, Catania	Spitaleri <i>et al.</i> PRC, 2004, Lamia <i>et al.</i> JPG, 2011
6	¹⁵ N(p, α) ¹² C	² H(¹⁵ N, α ¹² C)n	60	2.74	CYCLOTRON, TAMU, College Station TANDEM 13 MV LNS-INFN, Catania	La Cognata <i>et al.</i> PRC, 2008
7	¹⁸ Ο(p, α) ¹⁵ Ν	² H(¹⁸ O, α ¹⁵ N)n	54	1.76	(CYCLOTRON, TAMU, College Station TANDEM 13 MV LNS-INFN, Catania	La Cognata <i>et al.</i> PRL 2008,
8	¹⁹ F(p, α) ¹⁶ Ο	² H(¹⁹ F, α ¹⁶ O)n	50,55	8.11	TANDEM 13 MV LNS-INFN, Catania	La Cognata <i>et al.</i> ApJ Lett., 2011 Indelicato et al. ApJ 2017
9	¹⁷ Ο(p, α) ¹⁴ Ν	² H(¹⁷ O, α ¹⁴ N)n	45	-1.032	TANDEM 13 MV LNS-INFN, Catania TANDEM 11 MV Notre Dame	Sergi et al. PRC (R), 2010 Sergi et al PRC 2016

	Binary reaction	Indirect reaction	E _{lab}	Q ₃	Accelerator	Ref.
10	¹⁸ F(p ,α) ¹⁵ O	² H(¹⁸ F, α ¹⁵ O)n	48	0.65	CYCLOTRON CNS-RIKEN, Tokyo	Cherubini et al. PRC 2015 Pizzone et al. EPJ 2016
11	¹⁰ B(p, α) ⁷ Be	² H(¹⁰ B, α ⁷ Be)n	27	-1.078	TANDEM 13 MV LNS-INFN, Catania	Spitaleri et al. PRC 2014 Spitaleri et al. PRC 2017
12	⁶ Li (d ,α) ⁴He	⁶ Li(⁶ Li,αα) ⁴ He	5 4.8	20.9	TANDEM Demoscritos,Atene TANDEM, IRB, Zagreb	Cherubini <i>et al</i> . ApJ, 1996 Spitaleri <i>et al</i> .PRC, 2001
13	⁶ Li (d ,α) ⁴ He	⁶ Li(⁶ Li,αα) ⁴ He	6	20.9	CYCLOTRON Rez, Praha	Pizzone et al. PRC, 2011
14	³ He (d ,α) ¹ H	⁶ Li(³ He,p ⁴ He) ⁴ He	5,6	16.878	DINAMITRON, Bochum	La Cognata <i>et al.</i> 2005
15	² Н (d,p) ³ Н	²H(⁶ Li,p³He)⁴He	14	2.59	DINAMITRON, Bochum	Rinollo <i>et al.</i> EPJ 2005
16	²Н (d,p) ³Н	² H(³ He,p ³ H) ¹ H	18	-1.46	CYCLOTRON, Rez, Praha	Tumino et al. PLB 2011 Tumino et al. APJ 2014
17	² H(d,n) ³ He	² H(³ He,n ³ He) ¹ H	18	-2.224	CYCLOTRON Rez, Praha	Tumino et al. PLB 2011 Tumino et al. APJ 2014
18	⁹ Be <mark>(p,d)</mark> ⁸ Be	⁹ Be(d,d ⁸ Be)n	18	-1.66	TANDEM 13 MV CIAE, Beijing	Qungang Wen et al.2016
19	⁶ Li <mark>(n,a)</mark> ³ H	² Η(⁶ Li, † α) ¹ Η	14	2.224	TANDEM 13 MV LNS-INFN, Catania	Tumino et al.,EPJ A 2005 Gulino et al., JPG 2010

	Binary reaction	Indirect reaction	E _{lab}	Q	Accelerator	Ref.
20	¹⁷ O(n,a) ¹⁴ C	¹⁷ O(n, a ¹⁴ C) ¹ H	43.5	-0.40 7	TANDEM 11 MV Notre Dame TANDEM 13 MV LNS-INFN, Catania	Gulino et al. PRC(R) 2013
21	¹³ C(a,n) ¹⁶ O	¹³ C(⁶ Li, a n) ¹⁶ O	7.82	3.85	TANDEM FSU, Tallaassee, Florida, USA	La Cognata et al. PRL 2013 La Cognata et al ApJ 2013
22	¹² C(¹² C,a) ²⁰ Ne ¹² C(¹² C,p) ²³ Na	¹² C(¹⁴ N,a ²⁰ Ne) ² H ¹² C(¹⁴ N,p ²³ Na) ² H	30	-5.65 -8.03	TANDEM 13 MV LNS-INFN, Catania	Tumino et al. submitted
23	¹² C(a,a) ¹² C	¹³ C(⁶ Li, a n) ¹⁶ O	20	0	TANDEM 13 MV LNS-INFN, Catania	Spitaleri et al. EPJ 2000
24	¹ Н(р,р) ¹ Н	²H(p,pp)n	5,6	2,224	CYCLOTRON ATOMKI, Debrecen TANDEM IRB, Zagreb TANDEM 13 MV LNS-INFN, Catania TANDEM 5 MV Napoli University	Tumino et al. PRL 2007 Tumino et al. PRC 2008
25	¹⁹ F(a,p) ²² Ne	⁶ Li(¹⁹ F,p ²² Ne) ² H	6	1.2	IRB, Zagreb, TANDEM	Pizzone et al. ApJ 2017 D'Agata et al in prep.
25	⁷ Be(n,a)⁴He	² H(⁷ Be,aa) ¹ H	43.5	16.7	TANDEM LNL- INFN	Under analysis

RESONANCES IN C¹² ON CARBON REACTIONS

E. Almqvist, D. A. Bromley, and J. A. Kuehner Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, Canada (Received March 28, 1960)

The world's first tandem accelerator Installed at Chalk River in 1959

Molecular resonances in the ${}^{12}C+{}^{12}C$ fusion reaction

Great interest in a wide range of stellar burning scenarios in carbon-rich environments such as late evolutionary stages of stars with more than 8 M_o superbursts from accreting neutron stars Sne Ia

Carbon burning temperature from 0.5 to 1.2 GK $\, \rightarrow {\rm E_{cm}}$ from 1 to 2 MeV

Principal reactions:

 $\begin{array}{rcl} {}^{12}C({}^{12}C,\alpha){}^{20}\text{Ne} & + 4.617 \text{ MeV} \\ {}^{12}C({}^{12}C,p){}^{23}\text{Na} & + 2.241 \text{ MeV} \\ {}^{12}C({}^{12}C,n){}^{23}\text{Mg} & - 2.599 \text{ MeV} \\ {}^{12}C({}^{12}C,\gamma){}^{24}\text{Mg} & + 13.933 \text{ MeV} \\ {}^{12}C({}^{12}C,2\alpha){}^{20}\text{Ne} & -0.113 \text{ MeV} \end{array}$

The most frequent results of the interaction

Considerable efforts to measure the ${}^{12}C+{}^{12}C$ cross section at astrophysical energies:

C-burning: Status of Art

Resonances at nearly every 300 keV down to E_{cm} = 2.14 MeV. They would increase the present nonresonant reaction rate of the alpha(proton) channel by a factor of 5(2).

C-burning: Status of Art

By comparing the cross sections for the three carbon isotope systems, ${}^{12}C+{}^{12}C$, ${}^{12}C+{}^{13}C$, and ${}^{13}C+{}^{13}C$, it is found that the cross sections for ${}^{12}C+{}^{13}C$ and ${}^{13}C+{}^{13}C$ provide an upper limit for the fusion cross section of ${}^{12}C+{}^{12}C$ over a wide energy range (M. Notani et al. PRC 85 (2012) 014607)

→Thus, further measurements extending down to at least 1 MeV would be extremely important.

Our Experiment with theTHM

¹²C(¹²C, α)²⁰Ne and ¹²C(¹²C, p)²³Na reactions via the <u>Trojan Horse Method</u> applied to the ¹²C(¹⁴N, α²⁰Ne)²H and ¹²C(¹⁴N, p²³Na)²H three-body processes ²H from the ¹⁴N as spectator s

Observation of ¹²C cluster transfer in the ¹²C(¹⁴N,d)²⁴Mg^{*} reaction

(R.H. Zurmûhle et al. PRC 49(1994) 5)

QUASI-FREE MECHANISM

 $\mathbf{E}_{\mathbf{QF}} = \mathbf{E}_{14\mathbf{N}} \frac{m_{12}_{C}}{m_{14}_{N}} \cdot \frac{m_{12}_{C}}{m_{12}_{C}} - 10.27 \text{ MeV}$

The 14N+12C experiment at LNS ...

E_{14N}=30 MeV

Particle identification supplied by silicon telescopes: 38 μ m silicon detector as Δ E- and 1000 μ m Position Sensitive Detector (PSD) as E-detector

²⁰Ne+ α +d and ²³Na+p+d reaction channels reconstructed when detecting the ejectile of the two-body reactions (either α (black dots) or p (green dots)) in coincidence with the spectator d particle.

No detection of ²⁰Ne or ²³Na quite low energy \rightarrow too high detection threshold

E «(p)

Selection of the 3-body channels

-2

0

2

25

20

15

10

-12

-10

Selection of the quasi-free mechanism

Comparison between the experimental momentum distribution and the theoretical one

Momentum distribution of d inside ¹⁴N from the Wood-Saxon ¹²C-d bound state potential with standard geometrical parameters

 r_0 =1.25 fm, a=0.65 fm and V_0=54.427 MeV

THM (this holds for indirect in general) measurements are unique tools to investigate reactions or energy ranges difficult to study otherwise

Fields of interest: astrophysics, applied physics, nuclear structure, fundamental interactions

However, guidance by direct data and normalization to them is necessary not to incur in systematic errors

 \rightarrow A synergic application of direct and indirect approaches is the best guarantee of accurate reaction rates for astrophysical applications

THE ASFIN GROUP

C. Spitaleri, S. Cherubini, L. Guardo, M.Gulino, I. Indelicato, M. La Cognata, L.Lamia, R.G.Pizzone, S.M.R.Puglia, G.G. Rapisarda, S.Romano, M.L.Sergi, R. Spartà, A.Tumino

I N F N, Laboratori Nazionali del Sud, Università di Catania, Italy, and Università di Enna "Kore", Italy

THANK YOU FOR YOUR ATTENTION!

Comparison between two-body cross sections in the astrophysical region

Further step: R-matrix fits on all channels at the same time in the full energy range of interest \rightarrow

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}E_{xA}\mathrm{d}\Omega_s} = \mathrm{NF} \sum_i \left(2\mathrm{J}_i + 1\right) \times \left| \sqrt{\frac{\mathrm{k}_{\mathrm{f}}(E_{xA})}{\mu_{cC}}} \frac{\sqrt{2P_{l_i}(k_{cC}R_{cC})}M_i(p_{xA}R_{xA})\gamma^i_{cC}\gamma^i_{xA}}{D_i(E_{xA})} \right|^2$$

$$k_f(E_{xA}) = \sqrt{2\mu_{cC}(E_{xA}+Q)}/\hbar$$

$${}^{12}C+{}^{12}C \rightarrow \alpha_0 + {}^{20}Ne$$

$${}^{12}C+{}^{12}C \rightarrow \alpha_1 + {}^{20}Ne^*$$

 $D_i(E_{xA}) = \text{Standard R-matrix denominator of four-channel}$ formulas ${}^{12}C+{}^{12}C \rightarrow p_0+{}^{23}Na$ ${}^{12}C+{}^{12}C \rightarrow p_1+{}^{23}Na^*$

Reduced widths for known levels are fixed to reproduce their total and partial widths as in Abegg & Davis, PRC 1991

IMPORTANT: reduced widths are the same for the extraction of the S(E) factors \rightarrow From the fitting of the experimental THM cross section they can be obtained and used to deduce the OES S(E) factor.