Residual nuclei produced in fragmentation and fission reactions

Workshop on Nuclear Reactions (Theory and Experiments) Warsaw 22-24 January 2018

José Benlliure

Universidad of Santiago de Compostela

Fragmentation reactions

Heavy-ion induced reactions.

- kinetic energies above the Fermi energy up to few GeVs per nucleon
- peripheral or mid-peripheral collisions
- participant-spectator picture

Two-stage reaction scheme:

- abrasion
- ablation (evaporation, fission, multi-fragmentation)

J. Hufner, Phys. Rep. 125, 1985

"Can we expect a simple description of a complicated process like fragmentation? I think yes. A simple description works because the process is extremely complicated and phase space dominates over dynamics."

year ~ 2000

Can fragmentation still contribute to explore new frontiers in nuclear physics?

José Benlliure, NUSPRASEN workshop

Fragmentation reactions

José Benlliure, NUSPRASEN workshop

Exploring the limits of the nuclear chart

Describing fragmentation reactions: models

Two-step approach: abrasion+ablation

$$\sigma(Z_f, N_f) = \sigma^{abrasion}(Z_f, N_f) P^{survival}(Z_f, N_f, E^*, J)$$

Describing fragmentation reactions: models

Abrasion stage

Glauber approach

$$\sigma^{abrasion}(Z_f, N_f) = \binom{Z_p}{Z_f}\binom{N_p}{N_f} \int d^2b [1 - P_b(b)]^{(Z_p - Z_f)} P_p(b)^{Z_f} [1 - P_n(b)]^{(N_p - N_f)} P_n(b)^{N_f}$$
$$P_p(b) = \int ds dz \rho_p^{P}(s, z) exp \left[-\sigma_{pp} Z_T \int dz \rho_p^{T}(b - s, z) - \sigma_{pn} N_T \int dz \rho_n^{T}(b - s, z) \right]$$
$$P_n(b) = \int ds dz \rho_n^{P}(s, z) exp \left[-\sigma_{pn} Z_T \int dz \rho_p^{T}(b - s, z) - \sigma_{nn} N_T \int dz \rho_n^{T}(b - s, z) \right]$$

Intra-Nuclear Cascade models

- Numerical integration of the transparency functions in Glauber's approach
- Explicit treatment of subnucleonic degrees of freedom: pions, hyperons, ...
- Semiclassical approach neglecting the mean-field dynamics.

Transport models based on the Vlasov-Uehling-Uhlenbeck theory

Describing fragmentation reactions: models

Ablation stage

Statistical emission of nucleons and clusters: Hauser & Fesbach formalism

$$\Gamma_{\mu}(E^{*},J) = \frac{1}{2\pi\rho(E^{*},J)} \int_{0}^{E^{*}-B_{\mu}-E^{\nu}c} \sum_{J_{f}=0}^{\infty} \sum_{J_{\mu}=|J-J_{f}|}^{J+J_{f}} \sum_{\ell_{\mu}=|J_{\mu}-S_{\mu}|}^{J_{\mu}+S_{\mu}} T_{\ell_{\mu}}(\epsilon_{\mu})\rho_{f}(E^{*}-B_{\mu}-E^{\mu}_{c}-\epsilon_{\mu},J_{f})d\epsilon_{\mu}$$

- Main parameters: transmission coefficients, level densities and binding energies

Fission: Bohr&Wheeler + fission yield model

$$\Gamma_{fis.} = \frac{1}{2\pi\rho(E^*,J)} \int d\epsilon \rho_{sad.} (E^* - B_{fis.}(J) - \epsilon)$$

- Main parameters: level densities and fission barriers

$$Y(E^*, N) = \frac{\int_0^{E^* - V(E^*, N)} \rho_N(U) dU}{\sum_{N=0}^{N_{CN}} \int_0^{E^* - V(E^*, N)} \rho_N(U) dU}$$

- Main parameters: level densities and mass asymmetry potential

José Benlliure, NUSPRASEN workshop

Fragmentation yields: key features

Large range in isospin

N ¹⁹⁷Au+Be 1 A GeV Cold final-residues ²⁰ - the abrasion process is ruled by geometrical considerations and the neutron-proton abundance:

$$P(N-n, Z-z) = \frac{\begin{pmatrix} Z \\ z \end{pmatrix} \begin{pmatrix} N \\ n \end{pmatrix}}{\begin{pmatrix} A \\ a \end{pmatrix}} \qquad \begin{array}{c} A = Z + N \\ a = z + n \end{array}$$

- the ablation process reduces the isospin fluctuations:

$$\Gamma_n \approx \Gamma_p \implies B_n \approx B_p + E_C \quad N$$

numbei

Proton |

Warsaw, January 22-24 2018

José Benlliure, NUSPRASEN workshop

Fission yields: key features

Large neutron excess

- Final fission fragments almost preserve the N/Z of the fissioning nucleus
- Excitation energy broadens the range in A and N/Z covered by fission fragments, but neutron evaporation will reduce the neutron-excess.

Fragmentation and fission yields beyond present limits

José Benlliure, NUSPRASEN workshop

José Benlliure, NUSPRASEN workshop

José Benlliure, NUSPRASEN workshop

Cold-fragmentation reactions

Excitation energy gained by the remnants seems to be larger than expected from particle-hole excitations

J. Benlliure et al., PRC 78, 054605 (2008) K.-H. Schmidt et al., PLB 300, 313 (1993)

José Benlliure, NUSPRASEN workshop

José Benlliure, NUSPRASEN workshop

Sn

Fragmentation: medium-mass neutron-rich nuclei

Isospin dependence of the nucleon-removal process Te Te Te Te Te Te le 122 123 124 125 120 121 126 Sb Sb Sb ID plot at dispersive foca plane (S2) Sn **55**¢ Atomic Charge 113 115 116 106 107 108 110 112 114 117 109 T۲ 54 115 53 52 238U@950 MeV/u ²³⁸U beam scintillator SC ionization 51 chamber IC ToF 1 AUSIC2 50 THE REAL tor TPC **49** ToF 2 48 MUSIC ID plot at S4 (selected ¹³²Sn) F2 52 Atomic Charge 2.66 2.7 2.72 2.68 51 ¹³²Sn Mass over Charge ratio F4 50 ¹³¹In ¹³⁰Cd 49 48 47 46 2.58 2.68 2.7 2.72 2.74 2.6 2.62 2.64 2.66 Warsaw, January 22-24 2018 José Benlliure, NUSPRASEN workshop Mass over Charge ratio

Fragmentation: medium-mass neutron-rich nuclei

Isospin dependence of the nucleon-removal process

- Neutron knock-out is fairly well described by Glaubertype calculations and single-particle energies.

- Proton knock-out is over-predicted by a factor 2.
- This tendency reverses for neutron-deficient nuclei.

- Similar results are obtained with intra-nuclear cascade model calculations describing inelastic NN collisions and multi-nucleon scattering effects.

The excitation energy induced by the knock-out of deeply bound nucleons seems to exceed the single-particle approach and could be a signature of SRC.

J.L. Rodríguez et al., PRC 96, 034303 (2017)

Fragmentation: medium-mass neutron-rich nuclei

José Benlliure, NUSPRASEN workshop

Warsaw, January 22-24 2018

Fragmentation: medium-mass neutron-rich nuclei

José Benlliure, NUSPRASEN workshop

Fission yields

Provide information on the **potential energy surface** defining the fission process:

- Macroscopic component: liquid-drop
- Microscopic components: shell structure

the mass or the charge of the final fission fragments

Fission yields

The limits of the nuclear chart

45 (2010) + 65 (2018) new medium-mass neutron-rich nuclei in fission induced by in-flight fragmentation of ²³⁸U at RIBF/RIKEN

José Benlliure, NUSPRASEN workshop

Fission yields

Present challenges: structural effects in the potential energy surface

Fission yields in inverse kinematics

Fission yields: the SOFIA experiment @ GSI

Compete identification in A, Z of both fission fragments together with light-charged particles and neutrons

José Benlliure, NUSPRASEN workshop

Complete identification of both fission fragments

For the first time both fission fragments were identified in atomic and mass number and their velocities were determined with good accuracy.

Fission yields: the SOFIA experiments at GSI

Fission studies @ R3B/FAIR

(p,2p) and (p,pn) quasi-free scattering induced fission (~ 500 MeV)

Well defined kinematical conditions
 Momentum and E* of the recoiling nucleus

- ✓ Relatively large cross sections
 10 50 mb
- Large range in excitation energy
 up to 60 MeV
- Possibility tc
 inverse kin

Warsaw, January 22-24 2018

Missing energy

$$T_{p_{in}} + M(^{A}Z) = E^{*} + M(^{A-1}Z - 1) + T_{p_{1}} + T_{p_{2}}$$

José Benlliure, NUSPRASEN workshop

Fission studies @ R3B/FAIR

Coupling CALIFA-tracker + GLAD + NeuLAND + SOFIA

✓ Characterization of the fissioning nucleus (A, Z, E*) \rightarrow (p,2p) with CALIFA+tracker

✓ Characterization of the fission fragments (A, Z, TKE, ν) → SOFIA + NeuLAND

✓ Fragmentation reactions have a large impact in several areas of Nuclear Physics research: nuclei far from stability, hot and dense nuclear matter, hypernuclei,..., and in applications.

✓ Several new-generation RIB facilities are taken advantage of this reaction mechanism: RIBF, FRIB and FAIR.

✓ This reaction mechanism is fairly well described by Glauber-type calculations, although the detailed investigation of the nucleon removal indicates the limitations of the single-particle picture used for describing remnants excitations.

✓ Charge-exchange, cold-fragmentation and fission-fragmentation reactions will make possible to extend the present limits of the chart of nuclei.

✓ Fission yields are still challenging for theory and experiments: role of shell effects.

✓ Inverse kinematics represents a real break-through for the measurement of fission yields

✓ The SOFIA setup at GSI/FAIR recently provided the first complete characterization of both fission fragments in A, Z and TKE and it will be upgraded coupling this device to the R3B experiment.

José Benlliure, NUSPRASEN workshop