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The impacts and challenges of nuclear fission
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The impacts and challenges of nuclear fission

Primary fragments characteristics ?
A. Bulgac et. al. PRL 116, 122504 (2016)

Fission time scale ?
R. Rodrıguez-Guzmán et. al. Eur. Phys. J. A 52, 348 (2016)

Scission neutron ?
R. Capote et. al. PRC 93, 024609 (2016)

Nuclear energy
D. Rochman et. al. Ann. Nucl. Energy 95,
125-134 (2016)

Many body pb, dynamics, open system, entanglement:
- heavy ions collisions
- quantum chemistry C. L. Zhang et. al., PRC 94, 064323 (2016)

A. S. Umar et. al., PRC 94, 024605 (2016)

Nucleosynthesis
S. Goriely et. al. PRL 111, 242502 (2013)
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Schematic workfow of microscopic theory of fission
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Static meand field (HFB)
From a density functional (Skyrme, Gogny, RMF,...) to the energy and
nucleon density of a nuclear ground state

Constraints on the deformation:

R. Rodŕıguez-Guzmàn et al., Eur. Phys. J.
A 52 (2016) N. Schunck et al., PRC 90 (2014)

Continuous efforts towards
1 Speed and stability of HFB solvers at high deformations
2 Better and better density functionals
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Adiabatic dynamics (TDGCM+GOA, ATDHB)
Dynamics in a few dimensional space of deformations

1 Choose the collective variables:
elongation (Q20 in b),
mass asymmetry
(Q30 in b3/2)

2 Calculate potential energy
surface and inertia tensor

3 Define initial wave packet for
the probability amplitude

4 Compute time evolution of
probability amplitude

5 Extract fission fragment
distribution by computing the
flux of the probability amplitude
across the scission line

-1818 -1809 -1800 -1791 -1782 -1773

V (MeV)

Interpolated potential energy surface for
(n+239Pu) fission
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Development of the adiabatic dynamics for fission
2005: First calculation for 238U
H. Goutte et al., PRC 71, 024316

High numerical costs

2D PES 40000 HFB states
Dynamics 10 zs (10−21s)

Upgrade numerical methods

2018: FELIX-2.0
D. Regnier et al., in press in CPC.

New applications

2016-2017: Fission of 240Pu, 252Cf,
226Th
D. Regnier et al., PRC 93, 054611 (2016)
A. Zdeb et al., PRC 95, 054608 (2017)
H. Tao et al., PRC 96, 024319 (2017)
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Qualitative agreement with
experiments for a few fissioning
systems
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Limitations and challenges
Two major limitations:

1 Mapping of the full pb in a low dimensional space → discontinuities
2 Adiabatic picture → no description of the dynamics around scission

Adding collective variables

A numerical challenge, ' 1.106

cpu.h for a full 3D PES.
D. Regnier et al., EPJ Web of Conferences
146, 04043 (2017)

Adding some intrinsic excitation
SCIM method, R. Bernard et al.,
PRC 84 (2011)

Fully-fledged TDGCM M.
Verrière et al., EPJ Web of
Conferences 146, 04034 (2017)

Finite temperature EDF
N. Schunck et al., PRC 91 (2015)

Drastic increase of the number of
degrees of freedom
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Time dependent mean field (TDHF, TDBCS, TDHFB)
Evolution of one trajectory in the space of mean field states

The dynamics is governed by a system of k non linear differential
equations coupled by h,∆:

i~∂t

[
U
V

]
=

[
h − λ ∆
−∆∗ −h∗ + λ∗

] [
U
V

]

Diabatic dynamics up to two
’separated fragments’

Nucleon density
Excitation energies
Kinetic energies
Evaporation of nucleons

C. Simenel et al., PRC 89, 031601(R) (2014)
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Development of this microscopic approach

Two lines of improvements in the last few years:
Unrestricted spatial symmetries
Inclusion of the pairing correlations

2014: 258Fm 264Fm (no pairing)
C. Simenel et al., PRC 89, 031601(R) (2014)

2015: 258Fm with pairing (TDBCS)
G. Scamps et al., PRC 92, 011602(R) (2015)
' 1 week on a few CPU

60 to 80% of the TXE is generated
during the rapid descent to scission

2016: 240Pu with pairing (full TDHFB)
A. Bulgac et al., PRL 116, 122504 (2016)
' 10h on 1700 GPU

TKE reproduction within 3% Dynamics of the scission of 240Pu
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To do list and major limitation
Up to now, only a few applications of this method to fission. Need for
further investigations:

Dependency with the energy density functional
More comparison with experimental data
Scission neutrons
Fragments spin ?

Major limitation: mean field approximation
1 Too sharp distributions for the fragment observables (no yields)
2 No tunneling through the fission barrier

Particle distribution in the fragments G. Scamps et al., PRC 92, 011602(R) (2015)
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Stochastic mean field
Method:

1 Generate an ensemble of one body-densities that mimic the
fluctuations of one mean field state

2 Evolve each density with the TDHFB equation
3 Recover distributions of final observables by classical average

Pi(ρ)

ρ

tf
t

Pf(O[ρ(tf)])

ρ(t)

Y. Tanimura et al., PRL 118 (2017)

Possibility to compute fission fragments yields
No tunneling through the fission barrier
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First application
Spontaneous fission of 258Fm: Y. Tanimura et al., PRL 118 (2017)

Calculations based on 400
independent TDBCS trajectories.

Promising recovery of fission
fragments distributions
Application to other fissionning
systems ?
Bifurcations between fission
valleys ?

Total kinetic energy and mass yields of
258Fm
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Outlook & Perspectives
Improvement of numerical methods and leveraging modern computers
provides new opportunities

TDGCM

To do with the current methods:
More comparisons with sound
experimental data
→ range of validity
Large scale applications
(astrophysics)
Nuclear data applications ?
(few % precision required)

Big challenges:
Build a theoretical framework containing both collective fluctuations
and diabatic dynamics
→ Predict correlated observables e.g. Y(A,Z,TKE)
Link it with the entrance channel (initial excitation energy, spin...)
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Thank you for your attention !
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