Shape isomers, clusterization J. Darai Deparment of Experimental Physics, University of Debrecen Hungary

Abstract

The U(3) symmetry plays an essential role in connecting the fundamental structure models of atomic nuclei not only for the single-shell problem, but also for multi-shell excitations [1]. In this talk I show how this connecting symmetry can be applied for the determination of the stable shapes of nuclei.

The method is based on the investigation of the stability and self-consistency of the SU(3) symmetry [2], having quantum numbers which uniquely determine the quadrupole shape. The calculation is carried out in terms of the Nilsson model and the quasi-dynamical symmetry. This approach is an alternative of the well-known energy-minimum calculation for finding the shape isomers.

Due to the presence of the U(3) symmetry a selection rule for the cluster configurations (and consequently for the reaction channels) can be used.

Applications to light [2], as well as to heavy nuclei [3, 4], will be presented. (Heavy nuclei also have quasi-dynamical U(3) symmetry.)

Some of our theoretical predictions on shape isomers have already been approved by experimental observations [5, 6].

References

[1] J. Cseh, G. Riczu, J. Darai, SSNET 2022 Conference, Orsay contribution, will be submitted in November 2022

- [2] J. Cseh, G. Riczu, J. Darai, Phys. Lett. B 795 (2019) 160.
- [3] J. Darai et. al,, Phys. Rev. C84 (2011) 024302.
- [4] A. Algora, J. Cseh, J. Darai, P. O. Hess, Phys. Lett. B639 (2006) 451.
- [5] D.G. Jenkins et. al, Phys. Rev. C 86 (2012) 064309;
- J. Darai, J. Cseh, D.G. Jenkins, Phys. Rev. C 86 (2012) 064309.

[6] W. Sciani et. al, Phys. Rev. C80 (2009) 034319;

J. Cseh, J. Darai et. al, Phys. Rev. C80 (2009) 034320.