The problem of sub-barrier transfer reactions in Coulomb excitation studies

Kasia Hadyńska-Klęk

3rd GOSIA Workshop Heavy Ion Laboratory University of Warsaw 9-11.04.2018

Outline

- 1. Coulex of 42 Ca (INFN LNL)
 - Motivation
 - Experiment
- 2. Verification of the level scheme of 42 Ca
 - Experiment
 - Results
- 3. 1n transfer case of 42 Ca
- 4. Coulex of 94 Zr at INFN LNL 1n transfer?

Why 42 Ca? – A=40 region

Superdeformed band in 40 Ca:

- B(E2) $[4_2^+ \rightarrow 2_2^+] = 170$ W.u. (DSAM)
- deformation in the side band $\beta_2=0.6$ E.Ideguchi et al., PRL 87 (2001) 222501 C.J.Chiara et al., PRC 67 (2003) 041303(R)

Superdeformation in other isotopes:

 ³⁶Ar: C.E.Svensson et al., PRL85 (2000) 2693
 ³⁸Ar:

D.Rudolph et al., PRC65 (2002) 034305

- ⁴⁰Ar: E.Ideguchi et al., PLB686 (2010) 18
- ⁴⁴Ti:

D.C.O'Leary et al., PRC61 (2000) 064314

Coulomb excitation of 42 Ca – INFN LNL, Italy

- Beamtime: Feb.2010, INFN LNL
- Beam: 42 Ca, E=170 MeV
- Targets: ²⁰⁸Pb, 1 mg/cm² ¹⁹⁷Au, 1 mg/cm²
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, θ range from 100°-144°

Coulomb excitation of ⁴²Ca – INFN LNL, Italy

Coulomb excitation of 42 Ca – new lines?

- lead isotopes (204,206,207,208 Pb),
- ▼ 511 keV,
 376, 2048 and 1676 keV ?

<u>Sub-barrier transfer reaction analysis</u> – 43 Ca

(max)

2.85

0.06

1.36

0.29

0.03

0.03

0.05

0.02

2.79

0.04

0.02

0.06

0.06

28.2

Sub-barrier transfer reaction analysis

 $^{208}\mathrm{Pb}+^{42}\mathrm{Ca},\,85\%$ of the Coulomb barrier Comparison of distributions (9 bins):

- 2048 keV (assumed $2^+ \rightarrow 0^+_1$) and 1525 keV (known $2_1^+ \rightarrow 0_1^+$ in 42 Ca) – GOSIA
- 208 Pb $(^{42}$ Ca $,^{43}$ Ca $)^{207}$ Pb transfer to populate the $p_{3/2}$ state in ⁴³Ca – FRESCO
- Intensity ratio of 2048 and 376 keV lines: 30%, same as the ratio of 2046 and 373 keV transitions in 43 Ca Q(208 Pb(42 Ca, 43 Ca) 207 Pb) = 565 keV

Sub-barrier transfer reaction analysis

 208 Pb+ 42 Ca, 85% of the Coulomb barrier Comparison of distributions (9 bins):

- 2048 keV (assumed $2^+ \rightarrow 0^+_1$) and 1525 keV (known $2_1^+ \rightarrow 0_1^+$ in 42 Ca) – GOSIA
- 208 Pb(42 Ca, 43 Ca) 207 Pb transfer to populate the $p_{3/2}$ state in 43 Ca – FRESCO
- Intensity ratio of 2048 and 376 keV lines: 30%, same as the ratio of 2046 and 373 keV transitions in 43 Ca Q(208 Pb(42 Ca, 43 Ca) 207 Pb) = 565 keV

 197 Au 42 Ca COULEX data (87% Coulomb barrier) Comparison of distributions (3 bins):

- $^{197}\mathrm{Au}(^{42}\mathrm{Ca},^{43}\mathrm{Ca})^{196}\mathrm{Au}$ transfer
- $Q(^{197}Au(^{42}Ca,^{43}Ca)^{196}Au) = -140 \text{ keV}$
- one order of magnitude difference

Sub-barrier transfer reaction analysis

 208 Pb $+^{42}$ Ca, 85% of the Coulomb barrier Comparison of distributions (9 bins):

- 2048 keV (assumed $2^+ \rightarrow 0^+_1$) and 1525 keV (known $2_1^+ \rightarrow 0_1^+$ in 42 Ca) – GOSIA
- 208 Pb(42 Ca, 43 Ca) 207 Pb transfer to populate the $p_{3/2}$ state in 43 Ca – FRESCO
- Intensity ratio of 2048 and 376 keV lines: 30%, same as the ratio of 2046 and 373 keV transitions in 43 Ca Q(208 Pb(42 Ca, 43 Ca) 207 Pb) = 565 keV

¹⁹⁷Au+⁴²Ca COULEX data (87% Coulomb barrier) Comparison of distributions (3 bins):

- $^{197}\mathrm{Au}(^{42}\mathrm{Ca},^{43}\mathrm{Ca})^{196}\mathrm{Au}$ transfer
- $Q(^{197}Au(^{42}Ca,^{43}Ca)^{196}Au) = -140 \text{ keV}$
- one order of magnitude difference

FRESCO:

- the optical model potentials in the entrance 1. and exit channels were taken from the global parametrization (R. A. Broglia and A. Winther, Heavy Ion Reactions (Benjamin/Cummings, Reading, MA, 1981), Vol. 1.)
- the spectroscopic factors for the target nucleus 2. and the ejectile were set to unity

- Motivation: observation of two additional lines in the γ -ray spectra from Coulex of ⁴²Ca
- Aim: to confirm the medium and low spin region in ⁴²Ca
 - 1. Experiment at HIL, 2011
 - 2. ${}^{12}C({}^{32}S,2p){}^{42}Ca, E_{beam} = 76 \text{ MeV}$
 - 3. EAGLE: 15 HPGe in ACS

Verification of the level scheme of $^{42}\mathrm{Ca}$

61.7 s 7+.(5+.6+) 616.28 ⁴²21Sc Q_{FC}=6425.84 3189.33 100% 4.2 5.36 ns 2752.41 3.0 ps 2424.17 140 fs 2+ 387 ps 0+ 1837.3 0.82 ps 2+ 1524.73 stable 0+ 0 ⁴²20Ca

- ${}^{42}\text{Sc} \rightarrow {}^{42}\text{Ca}$, off-beam decay to 6_1^+ state (62 s)
- Coincidence gate: 328 keV (2⁺₂ feeding)
- No indication of both 376 keV and 2048 keV

61.7 s 7+.(5+.6+) 616.28 ⁴²₂₁Sc Q_{FC}=6425.84 3189.33 _100% 4.2 5.36 ns 2752.41 3.0 ps 2424.17 140 fs 2+ 387 ps 0+ 1837.3 0.82 ps 2+ 1524.73 stable 0+ 0 ⁴²20Ca

- $^{42}\text{Sc}\rightarrow^{42}\text{Ca}$, off-beam decay to 6_1^+ state (62 s)
- Coincidence gate: 328 keV (2^+_2) feeding)
- No indication of both 376 keV and
- $\begin{array}{c} 2048 \text{ keV} \\ \textbf{CONCLUSION: no additional} \\ \text{structure in} \ {}^{42}\text{Ca:} \end{array}$ a sub-barrier transfer reaction hypothesis verified

COULEX of 42 Ca – γ – γ analysis

- γ rays Doppler corrected for the projectile velocity on one axis,
- γ rays Doppler corrected for the recoil velocity on the other axis
- Coincidence gate: 570-keV γ -ray line first excited state in ²⁰⁷Pb
- 373-keV γ -ray line in ⁴³Ca visible

COULEX of 42 Ca – γ – γ analysis

- γ rays Doppler corrected for the projectile velocity on one axis,
- γ rays Doppler corrected for the recoil velocity on the other axis
- Coincidence gate: 570-keV γ -ray line first excited state in ²⁰⁷Pb
- 373-keV γ -ray line in ⁴³Ca visible

a strong evidence for the one-neutron transfer reaction

"Probing collectivity and configuration coexistence in ⁹⁴Zr with low-energy Coulomb excitation"

D.T. Doherty, M. Zielińska, M. Rocchini

Questions we want to answer:

- What is the shape of ⁹⁴Zr in 2⁺_{1,2} states?
 - measurement of quadrupole moments of 2⁺_{1,2} states – verification of the spherical-deformed (oblate?) scenario
 - is mixing between the coexisting structures small, like in ⁹⁶Zr and ⁹⁸Sr?
- Is 2⁺₂ a mixed-symmetry state?
 - are quadrupole moments of 2⁺_{1,2} states similar?
 - γ-ray angular distributions yielded two possible values of δ: 0.02(2) and 2.2(5)
 – which one is correct?
- (bonus) How important are octupole correlations in ⁹⁴Zr?
 - $\circ~3^-$ excitation cross section is related to $B(E3;\,3^- \rightarrow 0^+)$

Courtesy: M. Zielińska LNL PAC, February 13, 2017

Probing collectivity and configuration coexistence in 94Zr with low-energy Coulomb excitation

COULEX of ⁹⁴Zr at INFN LNL

- ⁹⁴Zr beam, E=370 MeV, 1-2 pnA (TANDEM+ALPI)
- 208 Pb target, 1mg/cm 2
- safe energy (180°) : 379 MeV
- SPIDER 7 segmented particle detector (see talk: M. Rocchini)
- GALILEO 25 HPGe detectors in ACS
- 6 large volume $LaBr_3$: Ce detectors from INFN Milano
- 4 days of data taking in March 2018

COULEX of 94 Zr at INFN LNL

COULEX of ⁹⁴Zr at INFN LNL

• excited states in 94 Zr: up to 2_4^+ !

COULEX of ⁹⁴Zr at INFN LNL

- excited states in 94 Zr: up to 2_4^+ !
- a line from 95 Zr!

COULEX of 94 Zr at INFN LNL

- excited states in 94 Zr: up to 2_4^+ !
- a line from 95 Zr!
- selectivity of the TANDEM-ALPI contamination impossible

COULEX of ⁹⁴Zr at INFN LNL

- excited states in 94 Zr: up to 2_4^+ !
- a line from 95 Zr!
- selectivity of the TANDEM-ALPI contamination impossible
- another case of subbarier transfer from ²⁰⁸Pb? to be solved

• is transfer a problem?

• is transfer a problem? probably yes!

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus
- more research needed

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus
- more research needed
- IDEA to revisit the already measured ⁴²Ca+²⁰⁸Pb and ⁴²Ca+¹⁹⁷Au systems and measure the cross sections at a wide energy range and check when transfer appears empirical determination of the Cline's safe distance,

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus
- more research needed
- IDEA to revisit the already measured ⁴²Ca+²⁰⁸Pb and ⁴²Ca+¹⁹⁷Au systems and measure the cross sections at a wide energy range and check when transfer appears empirical determination of the Cline's safe distance,
- IDEA to measure **different** projectile-target combinations at different beam energies more general and wide research

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus
- more research needed
- IDEA to revisit the already measured ⁴²Ca+²⁰⁸Pb and ⁴²Ca+¹⁹⁷Au systems and measure the cross sections at a wide energy range and check when transfer appears empirical determination of the Cline's safe distance,
- IDEA to measure **different** projectile-target combinations at different beam energies more general and wide research
- Does that problem have anything to do with the deformation?

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus
- more research needed
- IDEA to revisit the already measured ⁴²Ca+²⁰⁸Pb and ⁴²Ca+¹⁹⁷Au systems and measure the cross sections at a wide energy range and check when transfer appears empirical determination of the Cline's safe distance,
- IDEA to measure **different** projectile-target combinations at different beam energies more general and wide research
- Does that problem have anything to do with the deformation?
- How COULEX and transfer coexist?

- is transfer a problem? probably yes!
- i.e., unknown level schemes of radioactive nuclei a risk of attribution of the observed lines to the **wrong** nucleus
- more research needed
- IDEA to revisit the already measured ⁴²Ca+²⁰⁸Pb and ⁴²Ca+¹⁹⁷Au systems and measure the cross sections at a wide energy range and check when transfer appears empirical determination of the Cline's safe distance,
- IDEA to measure **different** projectile-target combinations at different beam energies more general and wide research
- Does that problem have anything to do with the deformation?
- How COULEX and transfer coexist?

Thank you for listening