Wzbudzenia kulombowskie – narzędzie do badania struktury jąder atomowych

- 1. Kinematyka rozproszenia
 - normalna kinematyka reakcji dwuciałowej
 - odwrotna kinematyka reakcji dwuciałowej
- 2. Eksperymenty wzbudzeń kulombowskich z wiązkami jąder egzotycznych.
- 3. Identyfikacja jąder pocisku i tarczy .
- 4. Przykłady eksperymentów wzbudzeń kulombowskich z różnymi układami detekcyjnymi.

Kinematyka reakcji jądrowych: A(a, b) B

$$\sum_{i} E_{i} = \sum_{f} E_{f}, \qquad \sum_{i} \mathbf{p}_{i} = \sum_{f} \mathbf{p}_{f} \qquad E = m_{0}c^{2} + T$$

 $\sum_{i} m_{0i}c^{2} + \sum_{i} T_{i} = \sum_{f} m_{0f}c^{2} + \sum_{f} T_{f} \quad Q = \sum_{i} m_{0i}c^{2} - \sum_{f} m_{0f}c^{2} = \sum_{f} T_{f} - \sum_{i} T_{i}$

Normalna kinematyka reakcji jądrowych: A_p < A_t

Normalna kinematyka reakcji jądrowych: A_p < A_t

Normalna kinematyka reakcji jądrowych: A_p < A_t

+: fizyczne rozwiązania dla energii rozproszenia jonu pocisku E_p

→ dany kąt rozproszenia jonu pocisku θ₃ jest związany z określoną energią rozproszenia E_p

Znajomość kąta rozproszenia jednego z partnerów reakcji oraz energii wiązki (T₁) całkowicie definiuje dwuciałową kinematykę reakcji.

Normalna kinematyka reakcji: ⁵⁸Ni + ¹²⁰Te ($A_p < A_t$)

wykres: M. Saxena

Odwrotna kinematyka reakcji: $A_p > A_t$

- > ograniczony zakres kątowy rozproszenia jądra pocisku w układzie laboratoryjnym: dla ¹⁸²Hg + ¹¹⁰Cd: **θ**_{lab}^{Hg} = **0° 38°**
- zakres kątowy rozproszenia jądra tarczy w układzie laboratoryjnym (niezależnie od A_p i A_t): θ_{lab} = 0° - 90°
- ten sam kąt rozproszenia jądra pocisku θ_{lab}^{Hg} odpowiada dwóm rozwiązaniom kinematycznym w układzie CM:
 - 1. rozproszenie pod małym kątem θ_{CM}
 - 2. rozproszenie pod dużym kątem θ_{CM}

$$\sin(\theta_{CM} - \theta_{LAB}) = \frac{A_{P}}{A_{T}} \cdot \sin(\theta_{LAB}); \quad \cos\theta_{CM}^{(1,2)} = -(A_{P}/A_{T})\sin^{2}\theta_{LAB} \pm \cos\theta_{LAB} \sqrt{1 - \left(\frac{A_{P}}{A_{t}}\right)^{2}\sin^{2}\theta_{LAB}} + : \text{mniejsze } \theta_{CM}$$
$$- : \text{większe } \theta_{CM}$$
$$\text{Dla } ^{182}\text{Hg} + ^{110}\text{Cd i dla } \theta_{LAB} > 38^{0}$$
$$[1 - (182/110)^{2}\sin^{2}\theta_{LAB}] < 0$$

Odwrotna kinematyka reakcji:

$\theta_{\text{CM}}\,\text{vs}\,\theta_{\text{LAB}}$

$$\cos\theta_{\rm CM}^{(1,2)} = -\left(A_{\rm P}/A_{\rm T}\right)\sin^2\theta_{\rm LAB} \pm \cos\theta_{\rm LAB}\sqrt{1 - \left(\frac{A_{\rm p}}{A_{\rm t}}\right)^2\sin\theta_{\rm LAB}}$$

 $\vartheta_{CM} = 68^{\circ}$: $\vartheta_{lab}^{Hg} = 25^{\circ}$ $\vartheta_{lab}^{Cd} = 56^{\circ}$

Rozwiazanie 2: $\vartheta_{CM} = 162^{\circ}$: $\vartheta_{lab}^{Hg} = 25^{\circ}$ $\vartheta_{lab}^{Cd} = 9^{\circ}$

Wykres: N. Bree, PhD thesis, KU Leuven

Odwrotna kinematyka reakcji: energie kinetyczne rozproszonych cząstek

- : większe θ_{CM}

N. Bree PhD thesis KU Leuven

N. Bree PhD thesis KU Leuven

Odwrotna kinematyka – wymóg

Identyfikacja jąder tarczy i jąder pocisku

N. Kesteloot PhD thesis KU Leuven, N. Kesteloot et al., Phys. Rev. C 92, 054301 (2015)

Kryteria wyboru tarczy w eksperymentach wzbudzeń kulombowskich z wiązkami egzotycznymi

- Możliwie duże (A,Z) → większa siła oddziaływania.
- Odpowiednia separacja energii kinematycznej jądra pocisku
 i jądra tarczy w eksperymentach z odwrotną kinematyką reakcji.
- Precyzyjna znajomość B(E2) i Q_{sp} stanów wzbudzonych w przypadku potrzeby normalizacji do wzbudzenia jądra tarczy.
- Odpowiednia separacja energetyczna kwantów γ emitowanych ze wzbudzonego kulombowsko jądra tarczy lub jądra pocisku.

Selekcja zdarzeń:

Selekcja zdarzeń:

- czasy życia stanów wzbudzonych w ¹⁸⁴Hg: τ ~ ps czas przelotu cząstki od tarczy do DSSSD: t ~ ns
- \rightarrow promieniowanie γ emitowane w locie
- rejestrowane energie kwantów γ są przesunięte w wyniku efektu Dopplera:

$$E_{lab} = \frac{\gamma E_0}{1 - \beta \cos(\eta)} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}} \quad \beta = \frac{v}{c} = \sqrt{\frac{2E_p}{m_p c^2}}$$
$$\cos(\eta) = \sin(\theta_p) \sin(\theta_\gamma) \cos(\phi_p - \phi_\gamma) + \cos(\theta_p) \cos(\theta_\gamma)$$

N. Bree PhD thesis KU Leuven, K. Wrzosek-Lipska et al., PRC to be published

Selekcja zdarzeń:

